Abstract

The performance of rate-0.8 4-ary LDPC code has been studied in a 50GHz-spaced 40Gb/s DWDM system with PDM-QPSK modulation. The net effective coding gain of 10dB is obtained at BER of 10−6. With the aid of time-interleaving polarization multiplexing and MAP detection, 10,560km transmission over legacy dispersion managed fiber is achieved without any countable errors. The proposed nonbinary quasi-cyclic LDPC code achieves an uncoded BER threshold at 4×10−2. Potential issues like phase ambiguity and coding length are also discussed when implementing LDPC in current coherent optical systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kobayashi, A. Sano, H. Masuda, K. Ishihara, E. Yoshida, Y. Miyamoto, H. Yamazaki, and T. Yamada, “160-Gb/s Polarization-Multiplexed 16-QAM Long-Haul Transmission over 3,123 km Using Digital Coherent Receiver with Digital PLL Based Frequency Offset Compensator,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuD1.
  2. D. Foursa, Y. Cai, J. Cai, C. Davidson, O. Sinkin, and B. Anderson, A. Lucero, A. Pilipetskii, G. Mohs, and N. Bergano, “Coherent 40 Gb/s Transmission with High Spectral Efficiency Over Transpacific Distance,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMI4.
  3. M. Salsi, C. Koebele, P. Tran, H. Mardoyan, E. Dutisseuil, and J. Renaudier, M. Bigot-Astruc, L. Provost, S. Richard, P. Sillard, S. Bigo, and G. Charlet, “Transmission of 96×100Gb/s with 23% Super-FEC Overhead over 11,680km, using Optical Spectral Engineering,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMR2.
  4. J. Cai, “100G Transoceanic Length Transmission with High Spectral Efficiency Using Bandwidth Constrained PDM-QPSK,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMI3.
  5. H. Sun, J. Gaudette, Y. Pan, M. O'Sullivan, K. Roberts, and K. Wu, “Modulation Formats for 100Gb/s Coherent Optical Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuN1.
  6. M. Scholten, T. Coe, and J. Dillard, “Continuously-Interleaved BCH (CIBCH) FEC Delivers Best in Class NECG for 40G and 100G Metro Applications”, in Optical Fiber Communication Conference, Technical Digest(CD) (Optical Society of America, 2010), paper NTuB3.
  7. M. Arabaci, Nonbinary-LDPC-Coded Modulation Schemes for High-Speed Optical Communication Networks,” Ph.D. Dissertation, University of Arizona (2010).
  8. I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
    [CrossRef]
  9. D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu, and Q. Xiong, “FPGA Verification of a Single QC-LDPC Code for 100 Gb/s Optical Systems without Error Floor down to BER of 10−15,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuN2.
  10. K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
    [CrossRef]
  11. I. B. Djordjevic, L. L. Minkov, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using Turbo equalization,” J. Opt. Commun. Netw. 1(6), 555–564 (2009).
    [CrossRef]
  12. S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications (Prentice Hall, 2004).
  13. M. C. Davey, “Error-correction using low-density parity-check codes,” Ph.D. dissertation, University of Cambridge (1999).
  14. J. G. Proakis, Digital Communications 4th ed. (New York: McGraw-Hill, 2000).
  15. S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted, decision-aided, maximum likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
    [CrossRef]
  16. J. Fu, M. Arabaci, I. B. Djordjevic, Y. Zhang, L. Xu, and T. Wang, “First Experimental Demonstration of Nonbinary LDPC-Coded Modulation Suitable for High-Speed Optical Communications,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWF4.

2010 (2)

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted, decision-aided, maximum likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

2009 (2)

Arabaci, M.

Chen, J.

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted, decision-aided, maximum likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

Djordjevic, I. B.

Inoue, T.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

Kam, P. Y.

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted, decision-aided, maximum likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

Kametani, S.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

Konishi, Y.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

Kubo, K.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

Li, X.

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted, decision-aided, maximum likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

Minkov, L. L.

Miyata, Y.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

Mizuochi, T.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

Onohara, K.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

Sugihara, K.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

Sugihara, T.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

Wang, T.

Xu, L.

Yoshida, H.

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

Yu, C.

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted, decision-aided, maximum likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

Zhang, S.

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted, decision-aided, maximum likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Onohara, T. Sugihara, Y. Konishi, Y. Miyata, T. Inoue, S. Kametani, K. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft-secision-based forward error correction for 100 Gb/s transport systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1258–1267 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted, decision-aided, maximum likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Other (12)

S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications (Prentice Hall, 2004).

M. C. Davey, “Error-correction using low-density parity-check codes,” Ph.D. dissertation, University of Cambridge (1999).

J. G. Proakis, Digital Communications 4th ed. (New York: McGraw-Hill, 2000).

T. Kobayashi, A. Sano, H. Masuda, K. Ishihara, E. Yoshida, Y. Miyamoto, H. Yamazaki, and T. Yamada, “160-Gb/s Polarization-Multiplexed 16-QAM Long-Haul Transmission over 3,123 km Using Digital Coherent Receiver with Digital PLL Based Frequency Offset Compensator,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuD1.

D. Foursa, Y. Cai, J. Cai, C. Davidson, O. Sinkin, and B. Anderson, A. Lucero, A. Pilipetskii, G. Mohs, and N. Bergano, “Coherent 40 Gb/s Transmission with High Spectral Efficiency Over Transpacific Distance,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMI4.

M. Salsi, C. Koebele, P. Tran, H. Mardoyan, E. Dutisseuil, and J. Renaudier, M. Bigot-Astruc, L. Provost, S. Richard, P. Sillard, S. Bigo, and G. Charlet, “Transmission of 96×100Gb/s with 23% Super-FEC Overhead over 11,680km, using Optical Spectral Engineering,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMR2.

J. Cai, “100G Transoceanic Length Transmission with High Spectral Efficiency Using Bandwidth Constrained PDM-QPSK,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMI3.

H. Sun, J. Gaudette, Y. Pan, M. O'Sullivan, K. Roberts, and K. Wu, “Modulation Formats for 100Gb/s Coherent Optical Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuN1.

M. Scholten, T. Coe, and J. Dillard, “Continuously-Interleaved BCH (CIBCH) FEC Delivers Best in Class NECG for 40G and 100G Metro Applications”, in Optical Fiber Communication Conference, Technical Digest(CD) (Optical Society of America, 2010), paper NTuB3.

M. Arabaci, Nonbinary-LDPC-Coded Modulation Schemes for High-Speed Optical Communication Networks,” Ph.D. Dissertation, University of Arizona (2010).

D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu, and Q. Xiong, “FPGA Verification of a Single QC-LDPC Code for 100 Gb/s Optical Systems without Error Floor down to BER of 10−15,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuN2.

J. Fu, M. Arabaci, I. B. Djordjevic, Y. Zhang, L. Xu, and T. Wang, “First Experimental Demonstration of Nonbinary LDPC-Coded Modulation Suitable for High-Speed Optical Communications,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWF4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for evaluating NB-LDPC. ADC: analog-to-digital converter. BPF: band-pass filter. DFB: distributed feedback laser, OTF: optical tunable filter. PC: polarization controller. SW: switch. VOA: variable optical attenuator. The inset shows the time-interleaved polarization-multiplexed RZ-QPSK waveform.

Fig. 2
Fig. 2

Maximum a posteriori probability (MAP) detector and NB-LDPC decoder.

Fig. 3
Fig. 3

B2B performance comparison between differential decoding and detection.

Fig. 4
Fig. 4

Measured BER of B2B (a) and transmission (b) for three different rate-0.8, (3,15)-regular, 4-ary LDPC codes, namely LDPC(16935,13548), LDPC(34665,27732), and LDPC(69945,55956).

Fig. 5
Fig. 5

The output Q-factor of three LDPC codes at BTB (blue lines) and after transmission (red lines).

Fig. 6
Fig. 6

Measured BERs for the uncoded case and for the 4-ary LDPC(69945,55956) coded modulation case after 20 loops at different launch powers.

Fig. 7
Fig. 7

Measured BERs for the uncoded case and for the 4-ary LDPC(69945,55956) coded modulation case versus the number of transmission loops when the launch power is −3.7dBm.

Metrics