Abstract

Organic bulk heterojunction solar cells are a promising candidate for low-cost next-generation photovoltaic systems. However, carrier extraction limitations necessitate thin active layers that sacrifice absorption for internal quantum efficiency or vice versa. Motivated by recent theoretical developments, we show that dielectric wavelength-scale grating structures can produce significant absorption resonances in a realistic organic cell architecture. We numerically demonstrate that 1D, 2D and multi-level ITO-air gratings lying on top of the organic solar cell stack produce a 8-15% increase in photocurrent for a model organic solar cell where PCDTBT:PC71BM is the organic semiconductor. Specific to this approach, the active layer itself remains untouched yet receives the benefit of light trapping by nanostructuring the top surface below which it lies. The techniques developed here are broadly applicable to organic semiconductors in general, and enable partial decoupling between active layer thickness and photocurrent generation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19, 1924–1945 (2004).
    [CrossRef]
  2. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10, 28–33 (2007).
    [CrossRef]
  3. D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006).
    [CrossRef]
  4. S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
    [CrossRef]
  5. J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
    [CrossRef]
  6. A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a tiox hole blocking layer,” Appl. Phys. Lett. 90, 163517 (2007).
    [CrossRef]
  7. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007).
    [CrossRef]
  8. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes–architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
    [CrossRef]
  9. S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Func. Mater. 18, 3956–3963 (2008).
    [CrossRef]
  10. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
    [CrossRef] [PubMed]
  11. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
    [CrossRef] [PubMed]
  12. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [CrossRef]
  13. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
    [CrossRef] [PubMed]
  14. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A 14, 3001–3008 (1997).
    [CrossRef]
  15. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491–17496 (2010).
    [CrossRef] [PubMed]
  16. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008).
    [CrossRef]
  17. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).
    [CrossRef]
  18. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
    [CrossRef]
  19. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
    [CrossRef]
  20. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
    [CrossRef]
  21. C. Brabec, V. Dyakonov, and U. Scherf, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley-VCH, 2008).
    [CrossRef]
  22. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18, 5691–5706 (2010).
    [CrossRef] [PubMed]
  23. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88, 073508 (2006).
    [CrossRef]
  24. M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 2783–2787 (2008).
    [CrossRef]
  25. H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
    [CrossRef]
  26. K.-Y. Yang, K.-M. Yoon, S. Lim, and H. Lee, “Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices,” J. Vac. Sci. Technol. B 27, 2786–2789 (2009).
    [CrossRef]

2011

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

2010

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18, 5691–5706 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491–17496 (2010).
[CrossRef] [PubMed]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

2009

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
[CrossRef] [PubMed]

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).
[CrossRef]

K.-Y. Yang, K.-M. Yoon, S. Lim, and H. Lee, “Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices,” J. Vac. Sci. Technol. B 27, 2786–2789 (2009).
[CrossRef]

2008

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 2783–2787 (2008).
[CrossRef]

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Func. Mater. 18, 3956–3963 (2008).
[CrossRef]

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008).
[CrossRef]

2007

A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a tiox hole blocking layer,” Appl. Phys. Lett. 90, 163517 (2007).
[CrossRef]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007).
[CrossRef]

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10, 28–33 (2007).
[CrossRef]

2006

D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006).
[CrossRef]

J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88, 073508 (2006).
[CrossRef]

2004

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes–architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

2002

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

1999

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

1997

1982

Agrawal, M.

Beaupr, S.

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

Bienstman, P.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).
[CrossRef]

Brabec, C.

D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006).
[CrossRef]

C. Brabec, V. Dyakonov, and U. Scherf, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley-VCH, 2008).
[CrossRef]

Buchholz, D. B.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 2783–2787 (2008).
[CrossRef]

Carney, T.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

Cha, J. J.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

Chang, R. P. H.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 2783–2787 (2008).
[CrossRef]

Cho, S.

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

Chu, C.-W.

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88, 073508 (2006).
[CrossRef]

Coates, N.

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

Cui, Y.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

DeSimone, J. M.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
[CrossRef] [PubMed]

Dyakonov, V.

C. Brabec, V. Dyakonov, and U. Scherf, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley-VCH, 2008).
[CrossRef]

Fan, S.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491–17496 (2010).
[CrossRef] [PubMed]

Fujieda, T.

A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a tiox hole blocking layer,” Appl. Phys. Lett. 90, 163517 (2007).
[CrossRef]

Gaudiana, R.

D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006).
[CrossRef]

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Glatthaar, M.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes–architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Gombert, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes–architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Gong, X.

J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Hains, A. W.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 2783–2787 (2008).
[CrossRef]

Hall, D. G.

Hardin, B. E.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10, 28–33 (2007).
[CrossRef]

Hayakawa, A.

A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a tiox hole blocking layer,” Appl. Phys. Lett. 90, 163517 (2007).
[CrossRef]

Heeger, A.

J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Heeger, A. J.

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

Hinsch, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes–architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Holmes, R. J.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008).
[CrossRef]

Hoppe, H.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

Hu, L.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

Irwin, M. D.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 2783–2787 (2008).
[CrossRef]

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Jo, J.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Func. Mater. 18, 3956–3963 (2008).
[CrossRef]

Kim, D.-Y.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Func. Mater. 18, 3956–3963 (2008).
[CrossRef]

Kim, J.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Func. Mater. 18, 3956–3963 (2008).
[CrossRef]

J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Kim, S.

J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Kim, S.-S.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Func. Mater. 18, 3956–3963 (2008).
[CrossRef]

Ko, D.-H.

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
[CrossRef] [PubMed]

Kong, D.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

Leclerc, M.

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

Lee, H.

K.-Y. Yang, K.-M. Yoon, S. Lim, and H. Lee, “Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices,” J. Vac. Sci. Technol. B 27, 2786–2789 (2009).
[CrossRef]

Lee, H.-H.

J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Lee, K.

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Li, G.

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88, 073508 (2006).
[CrossRef]

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Lim, S.

K.-Y. Yang, K.-M. Yoon, S. Lim, and H. Lee, “Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices,” J. Vac. Sci. Technol. B 27, 2786–2789 (2009).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008).
[CrossRef]

Lopez, R.

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
[CrossRef] [PubMed]

Luhman, W. A.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008).
[CrossRef]

Ma, W.

J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Maes, B.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).
[CrossRef]

Mallick, S. B.

Marks, T. J.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 2783–2787 (2008).
[CrossRef]

Mayer, A. C.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10, 28–33 (2007).
[CrossRef]

McGehee, M. D.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10, 28–33 (2007).
[CrossRef]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007).
[CrossRef]

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Moon, J. S.

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

Morana, M.

D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006).
[CrossRef]

Moses, D.

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

Muhlbacher, D.

D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006).
[CrossRef]

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Na, S.-I.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Func. Mater. 18, 3956–3963 (2008).
[CrossRef]

Niggemann, M.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes–architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Oh, S.-H.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Func. Mater. 18, 3956–3963 (2008).
[CrossRef]

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008).
[CrossRef]

Park, S. H.

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

Peumans, P.

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18, 5691–5706 (2010).
[CrossRef] [PubMed]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007).
[CrossRef]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491–17496 (2010).
[CrossRef] [PubMed]

Rim, S.-B.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007).
[CrossRef]

Rowell, M. W.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10, 28–33 (2007).
[CrossRef]

Roy, A.

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

Ruan, Z.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

Samulski, E. T.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

Sariciftci, N. S.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

Scharber, M.

D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006).
[CrossRef]

Scherf, U.

C. Brabec, V. Dyakonov, and U. Scherf, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley-VCH, 2008).
[CrossRef]

Scully, S. R.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10, 28–33 (2007).
[CrossRef]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007).
[CrossRef]

Shen, H.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).
[CrossRef]

Shrotriya, V.

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88, 073508 (2006).
[CrossRef]

Stuart, H. R.

Tikhodeev, S. G.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Tumbleston, J. R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

Uehara, K.

A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a tiox hole blocking layer,” Appl. Phys. Lett. 90, 163517 (2007).
[CrossRef]

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Waller, D.

D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

Williams, S.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
[CrossRef] [PubMed]

Wittwer, V.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes–architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Wu, H.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

Yablonovitch, E.

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Yang, K.-Y.

K.-Y. Yang, K.-M. Yoon, S. Lim, and H. Lee, “Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices,” J. Vac. Sci. Technol. B 27, 2786–2789 (2009).
[CrossRef]

Yang, Y.

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88, 073508 (2006).
[CrossRef]

Yao, Y.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88, 073508 (2006).
[CrossRef]

Yoon, K.-M.

K.-Y. Yang, K.-M. Yoon, S. Lim, and H. Lee, “Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices,” J. Vac. Sci. Technol. B 27, 2786–2789 (2009).
[CrossRef]

Yoshikawa, O.

A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a tiox hole blocking layer,” Appl. Phys. Lett. 90, 163517 (2007).
[CrossRef]

Yoshikawa, S.

A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a tiox hole blocking layer,” Appl. Phys. Lett. 90, 163517 (2007).
[CrossRef]

Yu, Z.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[CrossRef] [PubMed]

Zhang, L.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
[CrossRef] [PubMed]

Zhao, S.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007).
[CrossRef]

Zhu, J.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

Zhu, Z.

D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006).
[CrossRef]

Adv. Func. Mater.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Func. Mater. 18, 3956–3963 (2008).
[CrossRef]

Adv. Mater.

D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006).
[CrossRef]

J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Appl. Phys. Lett.

A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a tiox hole blocking layer,” Appl. Phys. Lett. 90, 163517 (2007).
[CrossRef]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007).
[CrossRef]

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008).
[CrossRef]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88, 073508 (2006).
[CrossRef]

J. Am. Chem. Soc.

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011).
[CrossRef]

J. Appl. Phys.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).
[CrossRef]

J. Mater. Res.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

K.-Y. Yang, K.-M. Yoon, S. Lim, and H. Lee, “Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices,” J. Vac. Sci. Technol. B 27, 2786–2789 (2009).
[CrossRef]

Mater. Today

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10, 28–33 (2007).
[CrossRef]

Nano Lett.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009).
[CrossRef] [PubMed]

Nat. Photonics

S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009).
[CrossRef]

Opt. Express

Phys. Rev. B

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Proc. Natl. Acad. Sci.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491–17496 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 2783–2787 (2008).
[CrossRef]

Thin Solid Films

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes–architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Other

C. Brabec, V. Dyakonov, and U. Scherf, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley-VCH, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the optimized planar reference cell, and (b) the absorption spectrum of the cell, with AM 1.5G spectrum also plotted for reference.

Fig. 2
Fig. 2

(a) Diagram of the optimized 1D periodic ITO grating structure. (b) Photocurrent Density (mA/cm2) for various grating periods, for the optimal device on other parameters, show that a 660 nm period grating is optimal for this device. (c) Photocurrent density for normally incident light as a function of ITO height and width for a grating with the optimal 660 nm period.

Fig. 3
Fig. 3

(a) Absorption in the active layer for the optimal 1D ITO grating organic cell for both polarizations (solid lines) compared to the optimal planar reference cell (dashed line). The broad peak at λ 0 = 677 nm for the grating in the s-polarization results in significant integrated photocurrent enhancement relative to the planar cell. (b) The electric field intensity |E|2 at the absorption peak of λ 0 = 677 nm. The field is concentrated in the ITO layer but penetrates down into the active layer, thereby yielding useful absorption.

Fig. 4
Fig. 4

Polarization-averaged photocurrent density vs. (polar) angle of incidence for planar and optimized 1D ITO grating cells. The grating structure outperforms the planar cell to large angles of incidence.

Fig. 5
Fig. 5

(a) Photocurrent density (mA/cm2) for normally incident light as a function of ITO nanostructure height and air hole diameter for a 640 nm period. (b) The optimized 2D ITO-air hole nanostructure on top of the organic solar cell stack.

Fig. 6
Fig. 6

(a) Absorption in the active layer comparing the 2D grating structure (solid line) against the planar reference cell (dashed line). There is a prominent peak λ 0 = 668 nm that produces notable photocurrent enhancement for both polarizations. (b) Field plot of the electric field intensity |E|2 at peak λ 0 = 668 nm. As with the 1D grating, the field is concentrated in the air part of the ITO layer but penetrates down into the active layer, thereby yielding useful absorption.

Fig. 7
Fig. 7

Absorption spectra for optimal 2D ITO grating structures while varying the PEDOT layer height. Thinner PEDOT layers show greater absorption at the peaks.

Fig. 8
Fig. 8

(a) A thin planar ITO layer introduced below the ITO-air grating layer, as shown in this diagram, may be electrically desirable for charge carrier extraction. (b) The effect of the thickness of this planar ITO layer on light absorption in the active layer is shown for increasing thicknesses. The resonance peak’s prominence decreases with increasing thickness.

Fig. 9
Fig. 9

Polarization-averaged photocurrent density vs. (polar) angle of incidence for planar and optimized 2D ITO nanostructure cells.

Fig. 10
Fig. 10

(a) A multi-level grating structure consisting of a 1D ITO grating lying on top of a 2D air-ITO grating at a 45° angle relative to the bottom layer. (b) Absorption in the active layer for the multi-level grating for both polarizations compared to a planar reference cell, both with 70 nm-thick active layers [4]. (c) Photocurrent density vs. the top grating layer’s angle relative to the lower layer, showing an optimum at 45°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J max = d λ [ e λ h c d I d λ α ( λ ) ] .

Metrics