Abstract

This paper presents a simple method for fabricating SU8 three dimensional (3D) prisms with very small inclined-angles for optical-fiber/planar-waveguide interconnection with low insertion-loss by combining self-filling, molding and nano-lithography processes on plane surface. The prisms possess ultra low 3D inclined angle of 0.6° and a small surface roughness of 3.5 nm. It is demonstrated that the transmission efficiency of SOI waveguides improved about 4.6 times at the presence of SU8 prisms with a coupling loss of 11 dB per taper and radiation loss of 2.4 dB per taper.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Zimmermann, T. Tekin, H. Schroeder, P. Dumon, and W. Bogaerts, “How to bring nanophotonics to application silicon photonics packaging,” IEEE LEOS Newsl. 22, 4–14 (2008).
  2. H. P. Hsu, A. F. Milton, and W. K. Burns, “Multiple fiber end fire coupling with single-mode channel waveguides,” Appl. Phys. Lett. 33(7), 603–605 (1978).
    [CrossRef]
  3. L. Nieradko, C. Gorecki, M. Józwik, and A. Sabac, “Fabrication and optical packaging of an integrated Mach-Zehnder interferometer on top of a movable micromirror,” J. Microlith., Microfab., Microsyst. 5(2), 023009 (2006).
    [CrossRef]
  4. R. Yang, S. A. Soper, and W. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators A Phys. 127(1), 123–130 (2006).
    [CrossRef] [PubMed]
  5. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
    [CrossRef] [PubMed]
  6. W. A. Pasmooij, P. A. Mandersloot, and M. K. Smit, “Prism-coupling of light into narrow planar optical waveguides,” J. Lightwave Technol. 7(1), 175–180 (1989).
    [CrossRef]
  7. Photonics in safety and security—a technology roadmap for SMEs on new photonic devices, materials and fabrication technologies, http://www.photonicroad.eu/upload/PhotonicRoadSME_Technology%20Roadmap_Safety%20and%20Security_ final%20document.pdf.
  8. K. Y. Hung, H. T. Hu, and F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” J. Micromech. Microeng. 14(7), 975–983 (2004).
    [CrossRef]
  9. H. Sato, H. Matsumura, S. Keino, and S. Shoji, “An all SU-8 microfluidic chip with built-in 3D fine microstructures,” J. Micromech. Microeng. 16(11), 2318–2322 (2006).
    [CrossRef]
  10. Y. K. Yoon, J. H. Park, F. Cros, and M. G. Allen, “Integrated vertical screen microfilter system using inclined SU-8 structures,” in Proceeding of IEEE The Sixteenth Annual International Conference on 19–23 Jan (IEEE, Kyoto, 2003), pp. 227 – 230.
  11. Z. Ling and K. Lian, “SU-8 3D microoptic components fabricated by inclined UV lithography in water,” Microsyst. Technol. 13(3-4), 245–251 (2006).
    [CrossRef]
  12. M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuators A Phys. 111(1), 14–20 (2004).
    [CrossRef]
  13. K. Y. Hung, F. G. Tseng, and H. P. Chou, “Application of 3D gray mask for the fabrication of curved SU-8 structures,” Microsyst. Technol. 11(4-5), 365–369 (2005).
    [CrossRef]
  14. J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).
  15. J. Onishi, K. Makabe, and Y. Matsumoto, “Fabrication of micro sloping structures of SU-8 by substrate penetration lithography,” Microsyst. Technol. 14(9-11), 1305–1310 (2008).
    [CrossRef]
  16. F. H. Ko, J. K. Chen, and F. C. Chang, “Fabricating and characterizing oblique polymer structures by electron beam writing on resist-coated SiO2 wafers,” J. Microelectron. Eng. 83(4-9), 1132–1137 (2006).
    [CrossRef]
  17. C. W. Liao, Y. T. Yang, S. W. Huang, and M. C. M. Lee, “Fiber-core-matched three-dimensional adiabatic tapered couplers for integrated photonic devices,” J. Lightwave Technol. 29(5), 770–774 (2011).
    [CrossRef]
  18. J. Mu and W. P. Huang, “Complex coupled-mode theory for tapered optical waveguides,” Opt. Lett. 36(6), 1026–1028 (2011).
    [PubMed]
  19. Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
    [CrossRef]
  20. M. H. Nguyen, W. C. Chiu, M. C. Lee, and F. G. Tseng, “Improving sensitivity of photonic crystal-based biosensors by a cavity arrangement,” in Proceeding of IEEE Conference on Solid-State Sensors, Actuators and Microsytems, Transducers’11 (Institute of Electrical and Electronics Engineers, Beijing, 2011), pp. 2267–2270.
  21. M. H. Nguyen, F. G. Tseng (Department of Engineering and System Science), and M. C. Lee (Department of Electrical Engineering, National TsingHua University, Hsinchu, Taiwan, R.O.C.) are preparing a manuscript to be called “Photonic crystal based biosensors – from simulations to experiments.”
  22. M. Naftalt and R. E. Miles, “Tertahertz beam interaction with amorphous materials” in Terahertz Frequency Detection and Identification of Materials and Objects, R. E. Miles, ed. (Springer, Spiez, 2006), http://books.google.com/books?id=_hOKj12pU6sC&pg=PA118&lpg=PA118&dq=absorption+coefficient,+SU8&source=bl&ots=VUQIdsttod&sig=zF2LefSmB7oJ6UFFnErzQbj03g4&hl=en&ei=RZNQTvLPPIXJrQf8l-msAg&sa=X&oi=book_result&ct=result&resnum=7&ved=0CE4Q6AEwBg#v=onepage&q=absorption%20coefficient%2C%20SU8&f = false .

2011

2008

J. Onishi, K. Makabe, and Y. Matsumoto, “Fabrication of micro sloping structures of SU-8 by substrate penetration lithography,” Microsyst. Technol. 14(9-11), 1305–1310 (2008).
[CrossRef]

L. Zimmermann, T. Tekin, H. Schroeder, P. Dumon, and W. Bogaerts, “How to bring nanophotonics to application silicon photonics packaging,” IEEE LEOS Newsl. 22, 4–14 (2008).

2007

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

2006

F. H. Ko, J. K. Chen, and F. C. Chang, “Fabricating and characterizing oblique polymer structures by electron beam writing on resist-coated SiO2 wafers,” J. Microelectron. Eng. 83(4-9), 1132–1137 (2006).
[CrossRef]

H. Sato, H. Matsumura, S. Keino, and S. Shoji, “An all SU-8 microfluidic chip with built-in 3D fine microstructures,” J. Micromech. Microeng. 16(11), 2318–2322 (2006).
[CrossRef]

Z. Ling and K. Lian, “SU-8 3D microoptic components fabricated by inclined UV lithography in water,” Microsyst. Technol. 13(3-4), 245–251 (2006).
[CrossRef]

L. Nieradko, C. Gorecki, M. Józwik, and A. Sabac, “Fabrication and optical packaging of an integrated Mach-Zehnder interferometer on top of a movable micromirror,” J. Microlith., Microfab., Microsyst. 5(2), 023009 (2006).
[CrossRef]

R. Yang, S. A. Soper, and W. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators A Phys. 127(1), 123–130 (2006).
[CrossRef] [PubMed]

2005

K. Y. Hung, F. G. Tseng, and H. P. Chou, “Application of 3D gray mask for the fabrication of curved SU-8 structures,” Microsyst. Technol. 11(4-5), 365–369 (2005).
[CrossRef]

2004

K. Y. Hung, H. T. Hu, and F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” J. Micromech. Microeng. 14(7), 975–983 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuators A Phys. 111(1), 14–20 (2004).
[CrossRef]

2002

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[CrossRef]

1989

W. A. Pasmooij, P. A. Mandersloot, and M. K. Smit, “Prism-coupling of light into narrow planar optical waveguides,” J. Lightwave Technol. 7(1), 175–180 (1989).
[CrossRef]

1978

H. P. Hsu, A. F. Milton, and W. K. Burns, “Multiple fiber end fire coupling with single-mode channel waveguides,” Appl. Phys. Lett. 33(7), 603–605 (1978).
[CrossRef]

Baets, R.

Beckx, S.

Bienstman, P.

Bogaerts, W.

Burns, W. K.

H. P. Hsu, A. F. Milton, and W. K. Burns, “Multiple fiber end fire coupling with single-mode channel waveguides,” Appl. Phys. Lett. 33(7), 603–605 (1978).
[CrossRef]

Chang, F. C.

F. H. Ko, J. K. Chen, and F. C. Chang, “Fabricating and characterizing oblique polymer structures by electron beam writing on resist-coated SiO2 wafers,” J. Microelectron. Eng. 83(4-9), 1132–1137 (2006).
[CrossRef]

Chapman, G. H.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

Chen, J. K.

F. H. Ko, J. K. Chen, and F. C. Chang, “Fabricating and characterizing oblique polymer structures by electron beam writing on resist-coated SiO2 wafers,” J. Microelectron. Eng. 83(4-9), 1132–1137 (2006).
[CrossRef]

Choo, C.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

Chou, H. P.

K. Y. Hung, F. G. Tseng, and H. P. Chou, “Application of 3D gray mask for the fabrication of curved SU-8 structures,” Microsyst. Technol. 11(4-5), 365–369 (2005).
[CrossRef]

Chuang, Y. J.

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[CrossRef]

Dumon, P.

Dykes, J. M.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

Gorecki, C.

L. Nieradko, C. Gorecki, M. Józwik, and A. Sabac, “Fabrication and optical packaging of an integrated Mach-Zehnder interferometer on top of a movable micromirror,” J. Microlith., Microfab., Microsyst. 5(2), 023009 (2006).
[CrossRef]

Gray, B. L.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

Han, M.

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuators A Phys. 111(1), 14–20 (2004).
[CrossRef]

Hsu, H. P.

H. P. Hsu, A. F. Milton, and W. K. Burns, “Multiple fiber end fire coupling with single-mode channel waveguides,” Appl. Phys. Lett. 33(7), 603–605 (1978).
[CrossRef]

Hu, H. T.

K. Y. Hung, H. T. Hu, and F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” J. Micromech. Microeng. 14(7), 975–983 (2004).
[CrossRef]

Huang, S. W.

Huang, W. P.

Hung, K. Y.

K. Y. Hung, F. G. Tseng, and H. P. Chou, “Application of 3D gray mask for the fabrication of curved SU-8 structures,” Microsyst. Technol. 11(4-5), 365–369 (2005).
[CrossRef]

K. Y. Hung, H. T. Hu, and F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” J. Micromech. Microeng. 14(7), 975–983 (2004).
[CrossRef]

Józwik, M.

L. Nieradko, C. Gorecki, M. Józwik, and A. Sabac, “Fabrication and optical packaging of an integrated Mach-Zehnder interferometer on top of a movable micromirror,” J. Microlith., Microfab., Microsyst. 5(2), 023009 (2006).
[CrossRef]

Keino, S.

H. Sato, H. Matsumura, S. Keino, and S. Shoji, “An all SU-8 microfluidic chip with built-in 3D fine microstructures,” J. Micromech. Microeng. 16(11), 2318–2322 (2006).
[CrossRef]

Ko, F. H.

F. H. Ko, J. K. Chen, and F. C. Chang, “Fabricating and characterizing oblique polymer structures by electron beam writing on resist-coated SiO2 wafers,” J. Microelectron. Eng. 83(4-9), 1132–1137 (2006).
[CrossRef]

Lee, M. C. M.

Lee, S. K.

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuators A Phys. 111(1), 14–20 (2004).
[CrossRef]

Lee, S. S.

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuators A Phys. 111(1), 14–20 (2004).
[CrossRef]

Lee, W.

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuators A Phys. 111(1), 14–20 (2004).
[CrossRef]

Lian, K.

Z. Ling and K. Lian, “SU-8 3D microoptic components fabricated by inclined UV lithography in water,” Microsyst. Technol. 13(3-4), 245–251 (2006).
[CrossRef]

Liao, C. W.

Lin, W. K.

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[CrossRef]

Ling, Z.

Z. Ling and K. Lian, “SU-8 3D microoptic components fabricated by inclined UV lithography in water,” Microsyst. Technol. 13(3-4), 245–251 (2006).
[CrossRef]

Luyssaert, B.

Makabe, K.

J. Onishi, K. Makabe, and Y. Matsumoto, “Fabrication of micro sloping structures of SU-8 by substrate penetration lithography,” Microsyst. Technol. 14(9-11), 1305–1310 (2008).
[CrossRef]

Mandersloot, P. A.

W. A. Pasmooij, P. A. Mandersloot, and M. K. Smit, “Prism-coupling of light into narrow planar optical waveguides,” J. Lightwave Technol. 7(1), 175–180 (1989).
[CrossRef]

Matsumoto, Y.

J. Onishi, K. Makabe, and Y. Matsumoto, “Fabrication of micro sloping structures of SU-8 by substrate penetration lithography,” Microsyst. Technol. 14(9-11), 1305–1310 (2008).
[CrossRef]

Matsumura, H.

H. Sato, H. Matsumura, S. Keino, and S. Shoji, “An all SU-8 microfluidic chip with built-in 3D fine microstructures,” J. Micromech. Microeng. 16(11), 2318–2322 (2006).
[CrossRef]

Milton, A. F.

H. P. Hsu, A. F. Milton, and W. K. Burns, “Multiple fiber end fire coupling with single-mode channel waveguides,” Appl. Phys. Lett. 33(7), 603–605 (1978).
[CrossRef]

Mu, J.

Nieradko, L.

L. Nieradko, C. Gorecki, M. Józwik, and A. Sabac, “Fabrication and optical packaging of an integrated Mach-Zehnder interferometer on top of a movable micromirror,” J. Microlith., Microfab., Microsyst. 5(2), 023009 (2006).
[CrossRef]

Onishi, J.

J. Onishi, K. Makabe, and Y. Matsumoto, “Fabrication of micro sloping structures of SU-8 by substrate penetration lithography,” Microsyst. Technol. 14(9-11), 1305–1310 (2008).
[CrossRef]

Parameswaren, A. M.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

Pasmooij, W. A.

W. A. Pasmooij, P. A. Mandersloot, and M. K. Smit, “Prism-coupling of light into narrow planar optical waveguides,” J. Lightwave Technol. 7(1), 175–180 (1989).
[CrossRef]

Poon, D. K.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

Sabac, A.

L. Nieradko, C. Gorecki, M. Józwik, and A. Sabac, “Fabrication and optical packaging of an integrated Mach-Zehnder interferometer on top of a movable micromirror,” J. Microlith., Microfab., Microsyst. 5(2), 023009 (2006).
[CrossRef]

Sameoto, D.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

Sato, H.

H. Sato, H. Matsumura, S. Keino, and S. Shoji, “An all SU-8 microfluidic chip with built-in 3D fine microstructures,” J. Micromech. Microeng. 16(11), 2318–2322 (2006).
[CrossRef]

Schroeder, H.

L. Zimmermann, T. Tekin, H. Schroeder, P. Dumon, and W. Bogaerts, “How to bring nanophotonics to application silicon photonics packaging,” IEEE LEOS Newsl. 22, 4–14 (2008).

Shoji, S.

H. Sato, H. Matsumura, S. Keino, and S. Shoji, “An all SU-8 microfluidic chip with built-in 3D fine microstructures,” J. Micromech. Microeng. 16(11), 2318–2322 (2006).
[CrossRef]

Smit, M. K.

W. A. Pasmooij, P. A. Mandersloot, and M. K. Smit, “Prism-coupling of light into narrow planar optical waveguides,” J. Lightwave Technol. 7(1), 175–180 (1989).
[CrossRef]

Soper, S. A.

R. Yang, S. A. Soper, and W. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators A Phys. 127(1), 123–130 (2006).
[CrossRef] [PubMed]

Taillaert, D.

Tekin, T.

L. Zimmermann, T. Tekin, H. Schroeder, P. Dumon, and W. Bogaerts, “How to bring nanophotonics to application silicon photonics packaging,” IEEE LEOS Newsl. 22, 4–14 (2008).

Tseng, F. G.

K. Y. Hung, F. G. Tseng, and H. P. Chou, “Application of 3D gray mask for the fabrication of curved SU-8 structures,” Microsyst. Technol. 11(4-5), 365–369 (2005).
[CrossRef]

K. Y. Hung, H. T. Hu, and F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” J. Micromech. Microeng. 14(7), 975–983 (2004).
[CrossRef]

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[CrossRef]

Tsui, J. T. K.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

Van Campenhout, J.

Van Thourhout, D.

Wang, J.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

Wang, W.

R. Yang, S. A. Soper, and W. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators A Phys. 127(1), 123–130 (2006).
[CrossRef] [PubMed]

Wiaux, V.

Yang, R.

R. Yang, S. A. Soper, and W. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators A Phys. 127(1), 123–130 (2006).
[CrossRef] [PubMed]

Yang, Y. T.

Zimmermann, L.

L. Zimmermann, T. Tekin, H. Schroeder, P. Dumon, and W. Bogaerts, “How to bring nanophotonics to application silicon photonics packaging,” IEEE LEOS Newsl. 22, 4–14 (2008).

Appl. Phys. Lett.

H. P. Hsu, A. F. Milton, and W. K. Burns, “Multiple fiber end fire coupling with single-mode channel waveguides,” Appl. Phys. Lett. 33(7), 603–605 (1978).
[CrossRef]

IEEE LEOS Newsl.

L. Zimmermann, T. Tekin, H. Schroeder, P. Dumon, and W. Bogaerts, “How to bring nanophotonics to application silicon photonics packaging,” IEEE LEOS Newsl. 22, 4–14 (2008).

J. Lightwave Technol.

W. A. Pasmooij, P. A. Mandersloot, and M. K. Smit, “Prism-coupling of light into narrow planar optical waveguides,” J. Lightwave Technol. 7(1), 175–180 (1989).
[CrossRef]

C. W. Liao, Y. T. Yang, S. W. Huang, and M. C. M. Lee, “Fiber-core-matched three-dimensional adiabatic tapered couplers for integrated photonic devices,” J. Lightwave Technol. 29(5), 770–774 (2011).
[CrossRef]

J. Microelectron. Eng.

F. H. Ko, J. K. Chen, and F. C. Chang, “Fabricating and characterizing oblique polymer structures by electron beam writing on resist-coated SiO2 wafers,” J. Microelectron. Eng. 83(4-9), 1132–1137 (2006).
[CrossRef]

J. Microlith., Microfab., Microsyst.

L. Nieradko, C. Gorecki, M. Józwik, and A. Sabac, “Fabrication and optical packaging of an integrated Mach-Zehnder interferometer on top of a movable micromirror,” J. Microlith., Microfab., Microsyst. 5(2), 023009 (2006).
[CrossRef]

J. Micromech. Microeng.

K. Y. Hung, H. T. Hu, and F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” J. Micromech. Microeng. 14(7), 975–983 (2004).
[CrossRef]

H. Sato, H. Matsumura, S. Keino, and S. Shoji, “An all SU-8 microfluidic chip with built-in 3D fine microstructures,” J. Micromech. Microeng. 16(11), 2318–2322 (2006).
[CrossRef]

Microsyst. Technol.

J. Onishi, K. Makabe, and Y. Matsumoto, “Fabrication of micro sloping structures of SU-8 by substrate penetration lithography,” Microsyst. Technol. 14(9-11), 1305–1310 (2008).
[CrossRef]

Z. Ling and K. Lian, “SU-8 3D microoptic components fabricated by inclined UV lithography in water,” Microsyst. Technol. 13(3-4), 245–251 (2006).
[CrossRef]

K. Y. Hung, F. G. Tseng, and H. P. Chou, “Application of 3D gray mask for the fabrication of curved SU-8 structures,” Microsyst. Technol. 11(4-5), 365–369 (2005).
[CrossRef]

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 64650N1 (2007).

Sens. Actuators A Phys.

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuators A Phys. 111(1), 14–20 (2004).
[CrossRef]

R. Yang, S. A. Soper, and W. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators A Phys. 127(1), 123–130 (2006).
[CrossRef] [PubMed]

Other

Y. K. Yoon, J. H. Park, F. Cros, and M. G. Allen, “Integrated vertical screen microfilter system using inclined SU-8 structures,” in Proceeding of IEEE The Sixteenth Annual International Conference on 19–23 Jan (IEEE, Kyoto, 2003), pp. 227 – 230.

Photonics in safety and security—a technology roadmap for SMEs on new photonic devices, materials and fabrication technologies, http://www.photonicroad.eu/upload/PhotonicRoadSME_Technology%20Roadmap_Safety%20and%20Security_ final%20document.pdf.

M. H. Nguyen, W. C. Chiu, M. C. Lee, and F. G. Tseng, “Improving sensitivity of photonic crystal-based biosensors by a cavity arrangement,” in Proceeding of IEEE Conference on Solid-State Sensors, Actuators and Microsytems, Transducers’11 (Institute of Electrical and Electronics Engineers, Beijing, 2011), pp. 2267–2270.

M. H. Nguyen, F. G. Tseng (Department of Engineering and System Science), and M. C. Lee (Department of Electrical Engineering, National TsingHua University, Hsinchu, Taiwan, R.O.C.) are preparing a manuscript to be called “Photonic crystal based biosensors – from simulations to experiments.”

M. Naftalt and R. E. Miles, “Tertahertz beam interaction with amorphous materials” in Terahertz Frequency Detection and Identification of Materials and Objects, R. E. Miles, ed. (Springer, Spiez, 2006), http://books.google.com/books?id=_hOKj12pU6sC&pg=PA118&lpg=PA118&dq=absorption+coefficient,+SU8&source=bl&ots=VUQIdsttod&sig=zF2LefSmB7oJ6UFFnErzQbj03g4&hl=en&ei=RZNQTvLPPIXJrQf8l-msAg&sa=X&oi=book_result&ct=result&resnum=7&ved=0CE4Q6AEwBg#v=onepage&q=absorption%20coefficient%2C%20SU8&f = false .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of Aluminum mold. It symmetrically assembles hinges, spacers, and limiters.

Fig. 2
Fig. 2

SU8 wedges formed by (a) spinning and (b) filling methods. Upper parts are schemes of wedge formations, lower parts are profiles of SU8 tapering wedges taken by Surface Profiler Dektak3ST. These SU8 wedges were made with larger inclined angles which were 1.7° and 3.0° in the spinning and filling methods, respectively.

Fig. 3
Fig. 3

SEM of 3D SU8 tapers and AFM image of the SU8 slant surface. These tapers were made by spinning (a) and filling (b) methods for the wedge shapes and photolithography for the side shapes. A SU8 taper was made with photomask protruding a bit over the SU8 edge giving almost zero height edge (c). The roughness Ra is about 3.5 nm measured over an area of 5*5 μm2 (d).

Fig. 4
Fig. 4

Some defects may be seen in the fabricated SU8 3D tapers: peeling of SU8 at low edge due to adhesion of SU8 to the uncoated edge of Teflon limiter (a) and uncontrolled broken structures due to the limiters shifted from pressing (b).

Fig. 5
Fig. 5

SU8 tapers with round end facets (a) and flat end facets (b). The improvement was obtained by adjusting exposure dose and filling Glycerol during lithography. Theses SU8 tapers had inclined angles of 1.3°, length of 450 μm. The height difference between two edges is 10 μm.

Fig. 6
Fig. 6

SEM of a joined waveguides consisting of SOI waveguides and SU8 prisms fabricated by photolithography: (a) overall view of SU8 prisms array, (b) zoomed joining position between SU8 prism and SOI waveguide. The SU8 prisms have a length of 450 μm, cross section are 2*0.34 μm2 at one side to match with SOI waveguide, and 5*5 μm2 at the other side to match with fibers. The inclined angle is 0.6°.

Fig. 7
Fig. 7

Experimental transmission spectra of SOI waveguides and a SOI waveguides integrated with SU8 prisms. (a) light propagated over SOI straight waveguides; (b) light propagated over waveguides with PhC structures in the centers. The weighted curves are smoothening.

Metrics