Abstract

A technique to detect real time variations of temperature or strain in Brillouin based distributed fiber sensors is proposed and is investigated in this paper. The technique is based on anomaly detection methods such as the RX-algorithm. Detection and isolation of dynamic events from the static ones are demonstrated by a proper processing of the Brillouin gain values obtained by using a standard BOTDA system. Results also suggest that better signal to noise ratio, dynamic range and spatial resolution can be obtained. For a pump pulse of 5 ns the spatial resolution is enhanced, (from 0.541 m obtained by direct gain measurement, to 0.418 m obtained with the technique here exposed) since the analysis is concentrated in the variation of the Brillouin gain and not only on the averaging of the signal along the time.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Galindez and J. M. Lopez-Higuera, “Decimeter spatial resolution by using differential pre-excitation BOTDA pulse technique,” IEEE Sens. J. PP(99), 1–1 (2011).
    [CrossRef] [PubMed]
  2. A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15(16), 10397–10407 (2007).
    [CrossRef] [PubMed]
  3. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  4. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
    [CrossRef] [PubMed]
  5. A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time-domain analysis sensors,” IEEE Sens. J. 11, 1067–1068 (2011).
    [CrossRef]
  6. T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
    [CrossRef]
  7. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [CrossRef] [PubMed]
  8. Z. Liu, G. Ferrier, X. Bao, X. Zeng, Q. Yu, and A. Kim, “Brillouin Scattering Based Distributed Fiber Optic Temperature Sensing for Fire Detection,” in Proceedings of The 7th International Symposium on Fire Safety Conference (Worcester, 2002).
  9. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [CrossRef] [PubMed]
  10. X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
    [CrossRef]
  11. P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed Fiber-Optic Sensor for Dynamic Strain Measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
    [CrossRef]
  12. K. Y. Song and K. Hotate, “Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
    [CrossRef]
  13. R. W. Boyd, Non linear Optics (Academic Press; Elsevier Science, 2003).
  14. C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Brillouin frequency shift of standard optical fibers set in water vapor medium,” Opt. Lett. 35(1), 28–30 (2010).
    [CrossRef] [PubMed]
  15. I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990).
    [CrossRef]

2011 (3)

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
[CrossRef] [PubMed]

A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time-domain analysis sensors,” IEEE Sens. J. 11, 1067–1068 (2011).
[CrossRef]

C. Galindez and J. M. Lopez-Higuera, “Decimeter spatial resolution by using differential pre-excitation BOTDA pulse technique,” IEEE Sens. J. PP(99), 1–1 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (2)

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[CrossRef]

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed Fiber-Optic Sensor for Dynamic Strain Measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

2007 (2)

K. Y. Song and K. Hotate, “Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15(16), 10397–10407 (2007).
[CrossRef] [PubMed]

2006 (1)

1990 (3)

I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

Bao, X.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[CrossRef]

Benmokrane, B.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[CrossRef]

Bernini, R.

Bolognini, G.

Brown, A. W.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed Fiber-Optic Sensor for Dynamic Strain Measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

Chaube, P.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed Fiber-Optic Sensor for Dynamic Strain Measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

Colpitts, B. G.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed Fiber-Optic Sensor for Dynamic Strain Measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

Di Pasquale, F.

Eisa, M.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[CrossRef]

El-Gamal, S.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[CrossRef]

Galindez, C.

C. Galindez and J. M. Lopez-Higuera, “Decimeter spatial resolution by using differential pre-excitation BOTDA pulse technique,” IEEE Sens. J. PP(99), 1–1 (2011).
[CrossRef] [PubMed]

C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Brillouin frequency shift of standard optical fibers set in water vapor medium,” Opt. Lett. 35(1), 28–30 (2010).
[CrossRef] [PubMed]

He, Z.

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

Hotate, K.

K. Y. Song and K. Hotate, “Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

Jagannathan, D.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed Fiber-Optic Sensor for Dynamic Strain Measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

Kurashima, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Li, W.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[CrossRef]

Loayssa, A.

A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time-domain analysis sensors,” IEEE Sens. J. 11, 1067–1068 (2011).
[CrossRef]

Lopez-Higuera, J. M.

C. Galindez and J. M. Lopez-Higuera, “Decimeter spatial resolution by using differential pre-excitation BOTDA pulse technique,” IEEE Sens. J. PP(99), 1–1 (2011).
[CrossRef] [PubMed]

C. Galindez, F. J. Madruga, and J. M. Lopez-Higuera, “Brillouin frequency shift of standard optical fibers set in water vapor medium,” Opt. Lett. 35(1), 28–30 (2010).
[CrossRef] [PubMed]

Madruga, F. J.

Minardo, A.

Reed, I. S.

I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990).
[CrossRef]

Song, K. Y.

K. Y. Song and K. Hotate, “Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

Soto, M. A.

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

Yu, X.

I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990).
[CrossRef]

Zeni, L.

Zhang, C.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[CrossRef]

Zornoza, A.

A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time-domain analysis sensors,” IEEE Sens. J. 11, 1067–1068 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “Technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

K. Y. Song and K. Hotate, “Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

IEEE Sens. J. (3)

A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time-domain analysis sensors,” IEEE Sens. J. 11, 1067–1068 (2011).
[CrossRef]

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed Fiber-Optic Sensor for Dynamic Strain Measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

C. Galindez and J. M. Lopez-Higuera, “Decimeter spatial resolution by using differential pre-excitation BOTDA pulse technique,” IEEE Sens. J. PP(99), 1–1 (2011).
[CrossRef] [PubMed]

IEEE Trans. Acoust. Speech Signal Process. (1)

I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Smart Mater. Struct. (1)

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[CrossRef]

Other (2)

Z. Liu, G. Ferrier, X. Bao, X. Zeng, Q. Yu, and A. Kim, “Brillouin Scattering Based Distributed Fiber Optic Temperature Sensing for Fire Detection,” in Proceedings of The 7th International Symposium on Fire Safety Conference (Worcester, 2002).

R. W. Boyd, Non linear Optics (Academic Press; Elsevier Science, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Traces and fiber distribution of the Brillouin frequency shift.

Fig. 2
Fig. 2

Experimental setup. Strain a) and temperature b) configuration. PS is the polarization scrambler, FUT is the fiber under test, VBias is the bias voltage, RF is the RF generator, OF is the optical filter, O/E is the photodiode, and A&P is the analysis and processing unit.

Fig. 3
Fig. 3

Exponential decaying behavior of the BGS around νB for strain variations on the fiber.

Fig. 4
Fig. 4

a) Brillouin intensity at νB = 10.86 GHz with no further analysis, i.e. P s ¯ i j m ( ν B ) with m = 1. b) BFS obtained by traditional BOTDA swept for the two static and the two dynamics fiber sections. c) All the fiber sections are statically strained at the values of used in Fig. 4.a.

Fig. 6
Fig. 6

Comparison between minimum and RX-algorithm techniques for different values of N.

Fig. 7
Fig. 7

Detection of multiple spatial events by using RX-algorithm.

Fig. 8
Fig. 8

a) RX-algorithm analysis of 1 m fiber section placed at 1078.5 m and strained 740 με for events with duration of 3, 6 12 and 20 seconds and b) for 8 events of 25 seconds. The capture time between each trace is 3 seconds.

Fig. 9
Fig. 9

a) RX-algorithm analysis for fiber section of 1.2 m strained 1500 με and 860 με. b) Events occur during 90 seconds separated 2 minutes. c) BFS obtained by sweeping the probe for a span of 170 MHz and a step of 1 MHz, when the segment is statically strained 860 με.

Fig. 10
Fig. 10

Measurement of temperature by using RX-algorithm analysis. The BOTDA system uses a pump pulse of 25 ns, a sampling interval of 0.4 m and a Δt of 6.06 s. The section measured is the same in both cases under the same conditions.

Fig. 11
Fig. 11

a) Two fiber sections of 0.5 m spaced 0.5 m and strained 1220 με and 1460 με. The BOTDA system uses a pump pulse of 5 ns, a spatial interval of 0.1 m and N = 500. Calculation of spatial resolution using the rise and the fall time for b) Intensity losses and c) RX-algorithm.

Fig. 5
Fig. 5

a) Dynamic detection. Strain evolution on time of b) Section 3 and c) Section 4.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P s ( z = 0 , ν , t ) = | E s | 2 = c 2 n g B P ( t ) exp ( 2 α z ) , g B = g 0 ( Δ ν B / 2 ) 2 ( ν ν B ) 2 + ( Δ ν B / 2 ) 2 ,
P s ¯ ( ν , t ) = ( P s ¯ 1 ( ν , t ) , P s ¯ j ( ν , t ) , , P s ¯ J ( ν , t ) ) , P s ¯ j ( ν , t ) = n = 1 N P s j n ( ν , t ) N ,
H 0 : x = j     (Target ansent),      H 1 : x = a s + j     (Target present),
R X ( x i ) = ( x i μ i ) T C i 1 ( x i μ i ) ,
μ i = ( 1 J j = 1 J x i j ) 1 T ,    and     C i = 1 J ( x i μ i ) ( x i μ i ) T .
R X Y m j ( P s ¯ i j m ) = ( P s ¯ i j m μ Y i j m ) T C Y j 1 ( P s ¯ i j m μ Y i j m ) Y p o r t ,
μ m p j = μ p i j m = ( 1 I i = 1 I P s ¯ i j m ) 1 T ; C p j = 1 I ( P s ¯ j m μ m p j ) ( P s ¯ j m μ m p j ) T , μ t i m = μ t i j m = ( 1 J j = 1 J P s ¯ i j m ) 1 T ; C t i = 1 J ( P s ¯ i m μ t i m ) ( P s ¯ i m μ t i m ) T .

Metrics