Abstract

Arrays of half-symmetric Fabry-Perot micro-cavities were fabricated by controlled formation of circular delamination buckles within a-Si/SiO2 multilayers. Cavity height scales approximately linearly with diameter, in reasonable agreement with predictions based on elastic buckling theory. The measured finesse (F > 103) and quality factors (Q > 104 in the 1550 nm range) are close to reflectance limited predictions, indicating that the cavities have low roughness and few defects. Degenerate Hermite-Gaussian and Laguerre-Gaussian modes were observed, suggesting a high degree of cylindrical symmetry. Given their silicon-based fabrication, these cavities hold promise as building blocks for integrated optical sensing systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005).
    [CrossRef]
  2. W. Liu and J. J. Talghader, “Thermally invariant dielectric coatings for micromirrors,” Appl. Opt. 41(16), 3285–3293 (2002).
    [CrossRef] [PubMed]
  3. R. R. A. Syms, “Principles of free-space optical microelectromechanical systems,” in Part C: Journal of Mechanical Engineering Science, Vol. 222 of Proceedings of the Institution of Mechanical Engineers (Sage Publications, 2008), pp. 1–17.
  4. P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
    [CrossRef]
  5. H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
    [CrossRef]
  6. R. Crocombe, “MEMS technology moves process spectroscopy into a new dimension,” Spectroscopy Europe16–19 (June–July 2004).
  7. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
    [CrossRef] [PubMed]
  8. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
    [CrossRef]
  9. C. Toninelli, Y. Delley, T. Stoferle, A. Renn, S. Gotzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
    [CrossRef]
  10. P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556–3558 (2010).
    [CrossRef] [PubMed]
  11. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity,” Opt. Lett. 35(13), 2293–2295 (2010).
    [CrossRef] [PubMed]
  12. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
    [CrossRef]
  13. E. Epp, N. Ponnampalam, W. Newman, B. Drobot, J. N. McMullin, A. F. Meldrum, and R. G. DeCorby, “Hollow Bragg waveguides fabricated by controlled buckling of Si/SiO2 multilayers,” Opt. Express 18(24), 24917–24925 (2010).
    [CrossRef] [PubMed]
  14. S. Bruynooghe, N. Schmidt, M. Sundermann, H. W. Becker, S. Spinzig, “Optical and structural properties of amorphous silicon coatings deposited by magnetron sputtering,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThA9.
  15. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007), Chap. 4.
  16. J. W. Hutchinson, M. D. Thouless, and E. G. Liniger, “Growth and configurational stability of circular, buckling-driven film delaminations,” Acta Metall. Mater. 40(2), 295–308 (1992).
    [CrossRef]
  17. L. Freund and S. Suresh, Thin Film Materials, Stress, Defect Formation, and Surface Evolution (Cambridge University Press, 2003), Chap. 5.
  18. A. E. Siegman, Lasers (University Science Books, 1986).
  19. R. C. Pennington, G. D’Alessandro, J. J. Baumberg, and M. Kaczmarek, “Tracking spatial modes in nearly hemispherical microcavities,” Opt. Lett. 32(21), 3131–3133 (2007).
    [CrossRef] [PubMed]
  20. I. Kimel and L. R. Elias, “Relations between Hermite and Laguerre Gaussian modes,” IEEE J. Quantum Electron. 29(9), 2562–2567 (1993).
    [CrossRef]
  21. E. Epp, N. Ponnampalam, J. N. McMullin, and R. G. Decorby, “Thermal tuning of hollow waveguides fabricated by controlled thin-film buckling,” Opt. Express 17(20), 17369–17375 (2009).
    [CrossRef] [PubMed]
  22. E. Garmire, “Theory of quarter-wave-stack dielectric mirrors used in a thin fabry-perot filter,” Appl. Opt. 42(27), 5442–5449 (2003).
    [CrossRef] [PubMed]

2010 (4)

2009 (2)

2007 (2)

R. C. Pennington, G. D’Alessandro, J. J. Baumberg, and M. Kaczmarek, “Tracking spatial modes in nearly hemispherical microcavities,” Opt. Lett. 32(21), 3131–3133 (2007).
[CrossRef] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

2005 (2)

E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005).
[CrossRef]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

2004 (1)

R. Crocombe, “MEMS technology moves process spectroscopy into a new dimension,” Spectroscopy Europe16–19 (June–July 2004).

2003 (1)

2002 (2)

W. Liu and J. J. Talghader, “Thermally invariant dielectric coatings for micromirrors,” Appl. Opt. 41(16), 3285–3293 (2002).
[CrossRef] [PubMed]

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

1998 (1)

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

1993 (1)

I. Kimel and L. R. Elias, “Relations between Hermite and Laguerre Gaussian modes,” IEEE J. Quantum Electron. 29(9), 2562–2567 (1993).
[CrossRef]

1992 (1)

J. W. Hutchinson, M. D. Thouless, and E. G. Liniger, “Growth and configurational stability of circular, buckling-driven film delaminations,” Acta Metall. Mater. 40(2), 295–308 (1992).
[CrossRef]

Azimi, M.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Aziz, M.

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

Baumberg, J. J.

Colombe, Y.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Crocombe, R.

R. Crocombe, “MEMS technology moves process spectroscopy into a new dimension,” Spectroscopy Europe16–19 (June–July 2004).

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

D’Alessandro, G.

DeCorby, R. G.

Delley, Y.

C. Toninelli, Y. Delley, T. Stoferle, A. Renn, S. Gotzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[CrossRef]

Dolan, P. R.

Drobot, B.

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Eklund, E. J.

E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005).
[CrossRef]

Elias, L. R.

I. Kimel and L. R. Elias, “Relations between Hermite and Laguerre Gaussian modes,” IEEE J. Quantum Electron. 29(9), 2562–2567 (1993).
[CrossRef]

Epp, E.

Eriksson, S.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Favero, I.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[CrossRef]

Flagg, E. B.

Garmire, E.

Gotzinger, S.

C. Toninelli, Y. Delley, T. Stoferle, A. Renn, S. Gotzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[CrossRef]

Grazioso, F.

Halbritter, H.

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

Hinds, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Hughes, G. M.

Hunger, D.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Hutchinson, J. W.

J. W. Hutchinson, M. D. Thouless, and E. G. Liniger, “Growth and configurational stability of circular, buckling-driven film delaminations,” Acta Metall. Mater. 40(2), 295–308 (1992).
[CrossRef]

Kaczmarek, M.

Karrai, K.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[CrossRef]

Kimel, I.

I. Kimel and L. R. Elias, “Relations between Hermite and Laguerre Gaussian modes,” IEEE J. Quantum Electron. 29(9), 2562–2567 (1993).
[CrossRef]

Kraft, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Kukharenka, E.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Lawall, J. R.

Liniger, E. G.

J. W. Hutchinson, M. D. Thouless, and E. G. Liniger, “Growth and configurational stability of circular, buckling-driven film delaminations,” Acta Metall. Mater. 40(2), 295–308 (1992).
[CrossRef]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Liu, W.

Maflah, L.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

McMullin, J. N.

Meissner, P.

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

Meldrum, A. F.

Moktadir, Z.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Muller, A.

Newman, W.

Patton, B. R.

Pennington, R. C.

Ponnampalam, N.

Reichel, J.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Renn, A.

C. Toninelli, Y. Delley, T. Stoferle, A. Renn, S. Gotzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[CrossRef]

Riemenschneider, F.

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

Sandoghdar, V.

C. Toninelli, Y. Delley, T. Stoferle, A. Renn, S. Gotzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[CrossRef]

Shkel, A. M.

E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005).
[CrossRef]

Smith, J. M.

Solomon, G. S.

Steinmetz, T.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Stoferle, T.

C. Toninelli, Y. Delley, T. Stoferle, A. Renn, S. Gotzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[CrossRef]

Talghader, J. J.

Tayebati, P.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Thouless, M. D.

J. W. Hutchinson, M. D. Thouless, and E. G. Liniger, “Growth and configurational stability of circular, buckling-driven film delaminations,” Acta Metall. Mater. 40(2), 295–308 (1992).
[CrossRef]

Toninelli, C.

C. Toninelli, Y. Delley, T. Stoferle, A. Renn, S. Gotzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[CrossRef]

Trupke, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Vakhshoori, D.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Wang, P.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Acta Metall. Mater. (1)

J. W. Hutchinson, M. D. Thouless, and E. G. Liniger, “Growth and configurational stability of circular, buckling-driven film delaminations,” Acta Metall. Mater. 40(2), 295–308 (1992).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

C. Toninelli, Y. Delley, T. Stoferle, A. Renn, S. Gotzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[CrossRef]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Electron. Lett. (2)

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. Kimel and L. R. Elias, “Relations between Hermite and Laguerre Gaussian modes,” IEEE J. Quantum Electron. 29(9), 2562–2567 (1993).
[CrossRef]

J. Micromech. Microeng. (1)

E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005).
[CrossRef]

Nat. Photonics (1)

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[CrossRef]

Nature (1)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Spectroscopy Europe (1)

R. Crocombe, “MEMS technology moves process spectroscopy into a new dimension,” Spectroscopy Europe16–19 (June–July 2004).

Other (5)

R. R. A. Syms, “Principles of free-space optical microelectromechanical systems,” in Part C: Journal of Mechanical Engineering Science, Vol. 222 of Proceedings of the Institution of Mechanical Engineers (Sage Publications, 2008), pp. 1–17.

S. Bruynooghe, N. Schmidt, M. Sundermann, H. W. Becker, S. Spinzig, “Optical and structural properties of amorphous silicon coatings deposited by magnetron sputtering,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThA9.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007), Chap. 4.

L. Freund and S. Suresh, Thin Film Materials, Stress, Defect Formation, and Surface Evolution (Cambridge University Press, 2003), Chap. 5.

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Buckled dome micro-cavities: (a) schematic cross-section showing optimized coupling to the fundamental cavity mode by a nearly Gaussian beam (with waist radius ω0 ) from a lensed fiber. For most cavities tested, the fiber mode field diameter was actually larger than 2ω0 , resulting in the excitation of multiple modes. (b) Microscope image of pairs of 150, 200, and 250 μm diameter domes. Some dust particles are also visible.

Fig. 2
Fig. 2

(a) The red curve shows peak height versus buckle diameter as predicted by elastic buckling theory, using the film parameters described in the main text and an effective medium compressive stress of 150 MPa. The blue symbols show average height measured using a profilometer. (b) The symbols show experimental profiles for representative 200, 250, and 300 μm diameter domes. The curves are circular sections with radius of curvature estimated by fitting the profile data from the top portion of each buckle, as described in the text.

Fig. 3
Fig. 3

The plot shows the transmission spectrum for a 250 μm diameter cavity, with peak height (mirror spacing) ~7.5 μm. The broad peak near 1522 nm is due to a transmission resonance outside the buckled areas. The inset plot shows the fundamental resonance line in greater detail. Mode-field images were captured with the laser tuned near one of the resonance lines, as indicated. Images for the four nominally degenerate modes associated with the third-order resonance were captured by making fine adjustments to the laser wavelength.

Fig. 4
Fig. 4

The plot shows the transmission spectrum for a 200 μm diameter dome, with peak height (mirror spacing) ~5.7 μm. Representative L P ,1 mode images are shown; they were captured by tuning the laser source to one of the resonance lines as indicated.

Tables (1)

Tables Icon

Table 1 Predicted and Measured Optical Properties for Representative Microcavities a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ = h [ 1.9 ( σ σ C 1 ) ] 1 / 2 [ 1.9 σ ( 1 ν 2 ) 1.2235 E ] 1 / 2 D 2 ,
R C D = D 2 8 δ + δ 2 ,
g = m + n = 2 p + l .
Δ λ T = λ 2 2 π z 0 Δ g ,

Metrics