S. A. Haque and J. Nelson, “Toward organic all-optical switching,” Science 327(5972), 1466–1467 (2010).
[Crossref]
[PubMed]
J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[Crossref]
[PubMed]
L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[Crossref]
S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[Crossref]
E. K. Wolff and A. Dér, “All-optical logic,” Nanotechnol. Percept. 6, 51–56 (2010).
[Crossref]
X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]
A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
[Crossref]
[PubMed]
E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[Crossref]
[PubMed]
A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[Crossref]
J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[Crossref]
A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
[Crossref]
D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[Crossref]
S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[Crossref]
[PubMed]
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref]
[PubMed]
P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[Crossref]
K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[Crossref]
[PubMed]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
S. P. Balashov, “Photoreactions of the photointermediates of bacteriorhodopsin,” Isr. J. Chem. 35, 415–428 (1995).
D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N,” J. Phys. Chem. 96(19), 7788–7792 (1992).
[Crossref]
R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[Crossref]
[PubMed]
J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[Crossref]
S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[Crossref]
G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43(1), 47–51 (1983).
[Crossref]
[PubMed]
P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
[Crossref]
[PubMed]
W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
[Crossref]
[PubMed]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
[Crossref]
[PubMed]
E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[Crossref]
[PubMed]
S. P. Balashov, “Photoreactions of the photointermediates of bacteriorhodopsin,” Isr. J. Chem. 35, 415–428 (1995).
J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[Crossref]
[PubMed]
A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
[Crossref]
[PubMed]
K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[Crossref]
[PubMed]
W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[Crossref]
[PubMed]
R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[Crossref]
[PubMed]
E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[Crossref]
[PubMed]
E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[Crossref]
[PubMed]
S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[Crossref]
A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
[Crossref]
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref]
[PubMed]
P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
[Crossref]
[PubMed]
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref]
[PubMed]
L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[Crossref]
E. K. Wolff and A. Dér, “All-optical logic,” Nanotechnol. Percept. 6, 51–56 (2010).
[Crossref]
A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[Crossref]
P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[Crossref]
X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]
J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[Crossref]
E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[Crossref]
[PubMed]
A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
[Crossref]
[PubMed]
L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[Crossref]
A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[Crossref]
P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[Crossref]
S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[Crossref]
[PubMed]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[Crossref]
[PubMed]
X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]
A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
[Crossref]
J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[Crossref]
[PubMed]
D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N,” J. Phys. Chem. 96(19), 7788–7792 (1992).
[Crossref]
S. A. Haque and J. Nelson, “Toward organic all-optical switching,” Science 327(5972), 1466–1467 (2010).
[Crossref]
[PubMed]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[Crossref]
[PubMed]
X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]
X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]
J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[Crossref]
G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43(1), 47–51 (1983).
[Crossref]
[PubMed]
P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
[Crossref]
[PubMed]
E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[Crossref]
[PubMed]
K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[Crossref]
[PubMed]
D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[Crossref]
W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[Crossref]
[PubMed]
J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[Crossref]
[PubMed]
D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[Crossref]
R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[Crossref]
[PubMed]
J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[Crossref]
[PubMed]
S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[Crossref]
D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[Crossref]
S. A. Haque and J. Nelson, “Toward organic all-optical switching,” Science 327(5972), 1466–1467 (2010).
[Crossref]
[PubMed]
J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[Crossref]
J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[Crossref]
[PubMed]
L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[Crossref]
A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[Crossref]
P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[Crossref]
P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
[Crossref]
[PubMed]
L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[Crossref]
P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[Crossref]
S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[Crossref]
[PubMed]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[Crossref]
J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[Crossref]
[PubMed]
M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
[Crossref]
[PubMed]
R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[Crossref]
[PubMed]
S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[Crossref]
A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
[Crossref]
[PubMed]
A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[Crossref]
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref]
[PubMed]
P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[Crossref]
M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
[Crossref]
[PubMed]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[Crossref]
S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[Crossref]
[PubMed]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[Crossref]
[PubMed]
S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[Crossref]
S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[Crossref]
[PubMed]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref]
[PubMed]
W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[Crossref]
[PubMed]
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref]
[PubMed]
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref]
[PubMed]
S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[Crossref]
J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[Crossref]
A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[Crossref]
G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43(1), 47–51 (1983).
[Crossref]
[PubMed]
S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[Crossref]
J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[Crossref]
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref]
[PubMed]
A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
[Crossref]
K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[Crossref]
[PubMed]
L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[Crossref]
E. K. Wolff and A. Dér, “All-optical logic,” Nanotechnol. Percept. 6, 51–56 (2010).
[Crossref]
A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[Crossref]
P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[Crossref]
X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[Crossref]
[PubMed]
D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N,” J. Phys. Chem. 96(19), 7788–7792 (1992).
[Crossref]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[Crossref]
L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[Crossref]
P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[Crossref]
J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[Crossref]
A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[Crossref]
S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[Crossref]
W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref]
[PubMed]
M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
[Crossref]
[PubMed]
G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43(1), 47–51 (1983).
[Crossref]
[PubMed]
P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
[Crossref]
[PubMed]
A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
[Crossref]
J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[Crossref]
S. P. Balashov, “Photoreactions of the photointermediates of bacteriorhodopsin,” Isr. J. Chem. 35, 415–428 (1995).
A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
[Crossref]
[PubMed]
S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[Crossref]
[PubMed]
S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[Crossref]
D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N,” J. Phys. Chem. 96(19), 7788–7792 (1992).
[Crossref]
D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[Crossref]
E. K. Wolff and A. Dér, “All-optical logic,” Nanotechnol. Percept. 6, 51–56 (2010).
[Crossref]
X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]
A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[Crossref]
E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[Crossref]
[PubMed]
S. A. Haque and J. Nelson, “Toward organic all-optical switching,” Science 327(5972), 1466–1467 (2010).
[Crossref]
[PubMed]
J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[Crossref]
[PubMed]
R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[Crossref]
[PubMed]
K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[Crossref]
[PubMed]
J. A. Stuart, D. L. Marcy, and R. R. Birge, “Photonic and optoelectronic application of bacteriorhodopsin,” in Bioelectronic Applications of Photochromic Pigments, A. Dér, and L. Keszthelyi, eds. (2001), pp. 15–29.
N. Vsevolodov, Biomolecular electronics (Birkhauser, Boston, 1998).