Abstract

Several inorganic and organic materials have been suggested for utilization as nonlinear optical material performing light-controlled active functions in integrated optical circuits, however, none of them is considered to be the optimal solution. Here we present the first demonstration of a subpicosecond photonic switch by an alternative approach, where the active role is performed by a material of biological origin: the chromoprotein bacteriorhodopsin, via its ultrafast BR->K and BR->I transitions. The results may serve as a basis for the future realization of protein-based integrated optical devices that can eventually lead to a conceptual revolution in the development of telecommunications technologies.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Haque and J. Nelson, “Toward organic all-optical switching,” Science 327(5972), 1466–1467 (2010).
    [CrossRef] [PubMed]
  2. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
    [CrossRef] [PubMed]
  3. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
    [CrossRef]
  4. W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
  5. N. Vsevolodov, Biomolecular electronics (Birkhauser, Boston, 1998).
  6. E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
    [CrossRef] [PubMed]
  7. J. A. Stuart, D. L. Marcy, and R. R. Birge, “Photonic and optoelectronic application of bacteriorhodopsin,” in Bioelectronic Applications of Photochromic Pigments, A. Dér, and L. Keszthelyi, eds. (2001), pp. 15–29.
  8. D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N,” J. Phys. Chem. 96(19), 7788–7792 (1992).
    [CrossRef]
  9. K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
    [CrossRef] [PubMed]
  10. S. P. Balashov, “Photoreactions of the photointermediates of bacteriorhodopsin,” Isr. J. Chem. 35, 415–428 (1995).
  11. P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
    [CrossRef] [PubMed]
  12. A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
    [CrossRef]
  13. G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43(1), 47–51 (1983).
    [CrossRef] [PubMed]
  14. L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
    [CrossRef]
  15. P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
    [CrossRef]
  16. A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
    [CrossRef]
  17. S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
    [CrossRef]
  18. J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
    [CrossRef]
  19. E. K. Wolff and A. Dér, “All-optical logic,” Nanotechnol. Percept. 6, 51–56 (2010).
    [CrossRef]
  20. M. Mero, A. Sipos, G. Kurdi, and K. Osvay, “Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme,” Opt. Express 19(10), 9646–9655 (2011).
    [CrossRef] [PubMed]
  21. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated optical chemical sensors,” J. Opt. Soc. Am. B 6(2), 209–220 (1989).
    [CrossRef]
  22. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
    [CrossRef] [PubMed]
  23. R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
    [CrossRef] [PubMed]
  24. S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
    [CrossRef] [PubMed]
  25. S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
    [CrossRef]
  26. A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
    [CrossRef]
  27. A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
    [CrossRef] [PubMed]
  28. J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
    [CrossRef]
  29. D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
    [CrossRef]
  30. M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
    [CrossRef] [PubMed]

2011 (1)

2010 (5)

S. A. Haque and J. Nelson, “Toward organic all-optical switching,” Science 327(5972), 1466–1467 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[CrossRef]

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

E. K. Wolff and A. Dér, “All-optical logic,” Nanotechnol. Percept. 6, 51–56 (2010).
[CrossRef]

2008 (2)

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[CrossRef]

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[CrossRef]

2005 (2)

A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
[CrossRef]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[CrossRef]

2002 (4)

S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[CrossRef] [PubMed]

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[CrossRef]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[CrossRef] [PubMed]

2001 (1)

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

1995 (1)

S. P. Balashov, “Photoreactions of the photointermediates of bacteriorhodopsin,” Isr. J. Chem. 35, 415–428 (1995).

1992 (1)

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N,” J. Phys. Chem. 96(19), 7788–7792 (1992).
[CrossRef]

1989 (1)

1988 (2)

J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[CrossRef]

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[CrossRef] [PubMed]

1985 (1)

S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[CrossRef]

1983 (1)

G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43(1), 47–51 (1983).
[CrossRef] [PubMed]

1980 (1)

P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
[CrossRef] [PubMed]

1979 (1)

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).

1978 (1)

M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
[CrossRef] [PubMed]

Aharoni, A.

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

Applebury, M. L.

M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
[CrossRef] [PubMed]

Balashov, S. P.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[CrossRef] [PubMed]

S. P. Balashov, “Photoreactions of the photointermediates of bacteriorhodopsin,” Isr. J. Chem. 35, 415–428 (1995).

Barlow, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Biesso, A.

A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
[CrossRef] [PubMed]

Birge, R. R.

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[CrossRef] [PubMed]

Bogomolni, R. A.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).

Bredas, J.-L.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Brito Cruz, C. H.

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[CrossRef] [PubMed]

Bugaychuk, S.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[CrossRef] [PubMed]

Burykin, N.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[CrossRef] [PubMed]

Chekalin, S.

S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[CrossRef]

Colonna, A.

A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
[CrossRef]

Csúcs, G.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Dancsházy, Z.

P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
[CrossRef] [PubMed]

De Paul, S. M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Dér, A.

E. K. Wolff and A. Dér, “All-optical logic,” Nanotechnol. Percept. 6, 51–56 (2010).
[CrossRef]

L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[CrossRef]

A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[CrossRef]

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[CrossRef]

Ding, C.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Dobler, J.

J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[CrossRef]

Ebrey, T.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[CrossRef] [PubMed]

El-Sayed, M.

A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
[CrossRef] [PubMed]

Fábián, L.

L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[CrossRef]

A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[CrossRef]

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[CrossRef]

Friedman, N.

S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[CrossRef] [PubMed]

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

Gillespie, N. B.

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[CrossRef] [PubMed]

Gong, Q.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Groma, G. I.

A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
[CrossRef]

Hales, J. M.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Hampp, N.

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N,” J. Phys. Chem. 96(19), 7788–7792 (1992).
[CrossRef]

Haque, S. A.

S. A. Haque and J. Nelson, “Toward organic all-optical switching,” Science 327(5972), 1466–1467 (2010).
[CrossRef] [PubMed]

Hou, B.

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

Hou, B. X.

S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[CrossRef] [PubMed]

Hu, X.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Jiang, P.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Kaiser, W.

J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[CrossRef]

Keszthelyi, L.

G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43(1), 47–51 (1983).
[CrossRef] [PubMed]

P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
[CrossRef] [PubMed]

Korchemskaya, E.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[CrossRef] [PubMed]

Krebs, M. P.

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[CrossRef] [PubMed]

Kukura, P.

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[CrossRef]

Kurdi, G.

Lozier, R. H.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).

Lukosz, W.

Maksymova, O.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[CrossRef] [PubMed]

Marder, R. R.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Mathies, R. A.

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[CrossRef]

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[CrossRef] [PubMed]

Matichak, J.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Matveetz, Y.

S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[CrossRef]

McCamant, D. W.

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[CrossRef]

Mero, M.

Nelson, J.

S. A. Haque and J. Nelson, “Toward organic all-optical switching,” Science 327(5972), 1466–1467 (2010).
[CrossRef] [PubMed]

Oesterhelt, D.

J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[CrossRef]

Ohira, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Ormos, P.

L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[CrossRef]

A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[CrossRef]

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[CrossRef]

P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
[CrossRef] [PubMed]

Oroszi, L.

L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[CrossRef]

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[CrossRef]

Osvay, K.

Ottolenghi, M.

S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[CrossRef] [PubMed]

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

Pakulev, A.

S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[CrossRef]

Perry, J. W.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Peters, K. S.

M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
[CrossRef] [PubMed]

Pollard, W. T.

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[CrossRef] [PubMed]

Prasad, M.

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

Qian, W.

A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
[CrossRef] [PubMed]

Ramsden, J. J.

A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[CrossRef]

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[CrossRef]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Rentzepis, P. M.

M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
[CrossRef] [PubMed]

Rousso, I.

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

Roy, S.

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

Ruhman, S.

S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[CrossRef] [PubMed]

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

Shank, C. V.

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[CrossRef] [PubMed]

Sharkov, S.

S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[CrossRef]

Sheves, M.

S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[CrossRef] [PubMed]

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

Sipos, A.

Spencer, N. D.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Stoeckenius, W.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).

Stuart, J. A.

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[CrossRef] [PubMed]

Szendro, I.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Textor, M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Tiefenthaler, K.

Topolancik, J.

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[CrossRef]

Valkai, S.

A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[CrossRef]

Váró, G.

G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43(1), 47–51 (1983).
[CrossRef] [PubMed]

Vollmer, F.

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[CrossRef]

Vörös, J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Vos, M. H.

A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
[CrossRef]

Wise, K. J.

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[CrossRef] [PubMed]

Wolff, E. K.

E. K. Wolff and A. Dér, “All-optical logic,” Nanotechnol. Percept. 6, 51–56 (2010).
[CrossRef]

L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[CrossRef]

A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[CrossRef]

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[CrossRef]

Yang, H.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Ye, T.

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

Yesudas, K.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Zeisel, D.

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N,” J. Phys. Chem. 96(19), 7788–7792 (1992).
[CrossRef]

Zhong, Q.

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

Zinth, W.

J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[CrossRef]

Appl. Phys. Lett. (3)

L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett. 97(2), 023305 (2010).
[CrossRef]

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80(21), 4060–4062 (2002).
[CrossRef]

J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett. 89(18), 184103 (2006).
[CrossRef]

Biochemistry (Mosc.) (1)

A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.) 66(11), 1210–1219 (2001).
[CrossRef]

Biochim. Biophys. Acta (2)

S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta 808(1), 94–102 (1985).
[CrossRef]

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).

Biomaterials (1)

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Biophys. J. (3)

M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J. 23(3), 375–382 (1978).
[CrossRef] [PubMed]

G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43(1), 47–51 (1983).
[CrossRef] [PubMed]

P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J. 31(2), 207–213 (1980).
[CrossRef] [PubMed]

Chem. Phys. Lett. (2)

A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett. 415(1-3), 69–73 (2005).
[CrossRef]

J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett. 144(2), 215–220 (1988).
[CrossRef]

Isr. J. Chem. (1)

S. P. Balashov, “Photoreactions of the photointermediates of bacteriorhodopsin,” Isr. J. Chem. 35, 415–428 (1995).

J. Am. Chem. Soc. (2)

S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc. 124(30), 8854–8858 (2002).
[CrossRef] [PubMed]

A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc. 130(11), 3258–3259 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys. 107(5), 053115 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N,” J. Phys. Chem. 96(19), 7788–7792 (1992).
[CrossRef]

J. Phys. Chem. B (1)

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[CrossRef]

Nanotechnol. Percept. (1)

E. K. Wolff and A. Dér, “All-optical logic,” Nanotechnol. Percept. 6, 51–56 (2010).
[CrossRef]

Nat. Photonics (1)

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Opt. Express (1)

Photochem. Photobiol. (2)

A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol. 83(2), 393–396 (2007).
[CrossRef]

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83(2), 403–408 (2007).
[CrossRef] [PubMed]

Science (3)

S. A. Haque and J. Nelson, “Toward organic all-optical switching,” Science 327(5972), 1466–1467 (2010).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science 240(4853), 777–779 (1988).
[CrossRef] [PubMed]

Trends Biotechnol. (1)

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20(9), 387–394 (2002).
[CrossRef] [PubMed]

Other (2)

J. A. Stuart, D. L. Marcy, and R. R. Birge, “Photonic and optoelectronic application of bacteriorhodopsin,” in Bioelectronic Applications of Photochromic Pigments, A. Dér, and L. Keszthelyi, eds. (2001), pp. 15–29.

N. Vsevolodov, Biomolecular electronics (Birkhauser, Boston, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. (a) The switch was excited by 530 nm pump pulses, and the effects were monitored by probe pulses centered at 790 nm. The traces were detected by a spectrophotometer or a photodiode, and recorded by a multichannel analyzer. The Fabry-Perot interferometer was used only in the sub-picosecond measurements. (b) Scheme of the switch with the incoming/outgoing pulses. A bR adlayer (purple) was deposited above a 1D photonic crystal (coupler grating, rainbow) onto a thin- film optical waveguide (blue) carried by a glass substrate (gray). Probe light: red, pump light: green.

Fig. 2
Fig. 2

Spectral shift of the incoupled light, initiated by the pump pulse. (a) Schematic representation of the spectral change: Excitation of the sample induces a refractive index increase of the bR adlayer, resulting in a red-shift of the resonance peak of the grating coupler (dashed line) at a fixed angle of incidence. As a consequence, a red-shifted narrow band is selected from the broad spectrum (indicated by the red-orange Gaussian). (b) The measured spectrum of the incoupled light at a fixed angle before (probe) and after (pump & probe) the excitation of the sample.

Fig. 3
Fig. 3

(a) Demonstration of the shift of the resonance peak of the incoupled light intensity in a thin-waveguide grating coupler device upon a hypothetic refractive index increase of the adlayer. The red arrow indicates the expected intensity change at the counterclockwise half maximum of the original resonance peak. (b) Outcoupled light intensity when the pump and probe pulses came together (with 100 ps probe delay, dotted red line, Meas. p&p), or separately (gray dashed: probe only, green dashed: scattered-in pump only), as detected by the photodiode. The solid red curve shows the real p&p signal corrected by the scattered-in pump pulse (i.e., the algebraic difference of the dotted red and green traces). Note that the time course of the signal represents the response of the photodiode only, not that of the actual light pulse.

Fig. 4
Fig. 4

Ultrafast experiments. (a) Demonstration of the shift of the resonance peak of the incoupled light intensity in a thin-waveguide grating coupler device upon a hypothetic refractive index decrease of the adlayer. The red arrow indicates the expected intensity change at the counterclockwise half maximum of the original resonance peak. (b) Intensities of the probe pulses incoupled at the half-maximum on the long-wavelength side of the resonance peak, measured without (dashed) and with excitation at zero delay (solid).

Fig. 5
Fig. 5

Simulation of the time course of the pump and probe pulses and the concentrations of the I, J and K intermediates. The calculated unweighted contributions of the intermediates to the measured signal are listed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 2 BR I ( t ) σ H k 1 I k 3 J k 4 K
d d t [ B R ] = I p u m p ( t ) σ [ B R ] + k 2 [ I ] d d t [ H ] = I p u m p ( t ) σ [ B R ] k 1 [ H ] d d t [ I ] = k 1 [ H ] ( k 2 + k 3 ) [ I ] d d t [ J ] = k 3 [ I ] k 4 [ J ] d d t [ K ] = k 4 [ J ]

Metrics