Abstract

In this paper, we present the study of the acousto-optic behavior of underwater-acoustic sensors constituted by fiber Bragg gratings (FBGs) coated by ring-shaped overlays. Via full-wave numerical simulations, we study the complex opto-acousto-mechanical interaction among an incident acoustic wave traveling in water, the optical fiber surrounded by the ring shaped coating, and the FBG inscribed the fiber, focusing on the frequency range 0.5-30 kHz of interest for SONAR applications. Our results fully characterize the mechanical behavior of an acoustically driven coated FBG, and highlight the key role played by the coating in enhancing significantly its sensitivity by comparison with a standard uncoated configuration. Furthermore, the hydrophone sensitivity spectrum exhibits characteristic resonances, which strongly improve the sensitivity with respect to its background (i.e., away from resonances) level. Via a three-dimensional modal analysis, we verify that the composite cylindrical structure of the sensor acts as an acoustic resonator tuned at the frequencies of its longitudinal vibration modes. In order to evaluate the sensor performance, we also carry out a comprehensive parametric analysis by varying the geometrical and mechanical properties of the coating, whose results also provide a useful design tool for performance optimization and/or tailoring for specific SONAR applications. Finally, a preliminary validation of the proposed numerical analysis has been carried out through experimental data obtained using polymeric coated FBGs sensors revealing a good agreement and prediction capability.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
    [CrossRef]
  2. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1990).
  3. G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
    [CrossRef]
  4. D. J. Hill and P. J. Nash, “In-water acoustic response of a coated DFB fibre laser sensor,” Proc. SPIE 4185, 33–36 (2000).
  5. S. Fosters, A. Tikhomirova, M. Milnesa, J. van Velzena, and G. Hardyb, “A fibre laser hydrophone,” Proc. SPIE 5855, 627–630 (2005).
    [CrossRef]
  6. S. Goodman, S. Foster, J. Van Velzen, and H. Mendis, “Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia,” Proc. SPIE 7503, 75034L1 (2009).
  7. N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4(6), 691–694 (1997).
    [CrossRef]
  8. N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
    [CrossRef] [PubMed]
  9. W. Thongnum, N. Takahashi, and S. Takahashi, “Temperature stabilization of fiber Bragg grating vibration sensor,” in OFS 2002, 15th Optical Fiber Sensors Conference Technical Digest, 2002. (2002), Vol. 1, pp. 223–226.
  10. N. Takahashi, K. Tetsumura, and S. Takahashi, “Multipoint detection of acoustical wave in water with WDM fiber Bragg grating sensor,” Proc. SPIE 3740, 270–273 (1999).
    [CrossRef]
  11. H. Yokosuka, S. Tanaka, and N. Takahashi, “Time-division multiplexing operation of temperature-compensated fiber Bragg grating underwater acoustic sensor array with feedback control,” Acoust. Sci. Technol. 26(5), 456–458 (2005).
    [CrossRef]
  12. D. J. Hill and G. A. Cranch, “Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating,” Electron. Lett. 35(15), 1268–1269 (1999).
    [CrossRef]
  13. Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating,” Electron. Lett. 36(6), 564–566 (2000).
    [CrossRef]
  14. G. B. Hocker, “Fiber optic acoustic sensors with composite structure: an analysis,” Appl. Opt. 18(21), 3679–3683 (1979).
    [CrossRef] [PubMed]
  15. A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers 82, 1450–1457 (2007).
  16. S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland) 9(6), 4446–4454 (2009).
    [CrossRef]
  17. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, 1987).
  18. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering (Springer, 1998).
  19. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).
  20. C. J. S. de Matos, P. Torres, L. C. G. Valente, W. Margulis, and R. Stubbe, “Fiber Bragg grating (FBG) characterization and shaping by local pressure,” J. Lightwave Technol. 19(8), 1206–1211 (2001).
    [CrossRef]
  21. A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
    [CrossRef] [PubMed]
  22. COMSOL Multiphysics, User’s Guide (COMSOL AB, 2008).
  23. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [CrossRef]
  24. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B Condens. Matter 52(11), 7982–7986 (1995).
    [CrossRef] [PubMed]
  25. A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, and A. Cusano, “Guided resonances in photonic quasicrystals,” Opt. Express 17(8), 6335–6346 (2009).
    [PubMed]
  26. G. M. L. Gladwell and D. K. Vijay, “Natural frequencies of free finite length circular cylinders,” J. Sound Vibrat. 42(3), 387–397 (1975).
    [CrossRef]
  27. C. F. Beards, Structural Vibration Analysis and Damping (Butterworth Heinemann, 1996).
  28. A. Guran, J. Ripoche, and F. Ziegler, Acoustic Interactions with Submerged Elastic Structures (World Scientific, 1996).
  29. M. Moccia, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part I: numerical analysis,” Proc. SPIE 7753, 775384, 775384-4 (2011).
    [CrossRef]
  30. M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE 7753, 775383, 775383-4 (2011).
    [CrossRef]
  31. “Damival resins: polyurethane and epoxy systems for potting and encapsulation,” www.sibel.bg/upl_doc/DAMIVAL_E.pdf .
  32. “Huntsman advanced materials,” www.huntsmanservice.com/Product_Finder/ui/PSDetailCompositeList.do?pInfoSBUId=9&PCId=1663
  33. “eFunda polymer material properties,” http://www.efunda.com/materials/polymers/properties/polymer_datasheet.cfm?MajorID=PU&MinorID=1 .
  34. T. Pritz, “The Poisson’s loss factor of solid viscoelastic materials,” J. Sound Vibrat. 306(3-5), 790–802 (2007).
    [CrossRef]
  35. A. Sorathia, “Polyurethane-epoxy interpenetrating polymer network acoustic damping material,” U.S. Patent No. 5,331,062 (19 July 1994).
  36. F. A. Khayyat and P. Stanley, “The dependence of the mechanical, physical and optical properties of Araldite CT200/HT 907 on temperature over the range −10°C to 70°C,” J. Phys. D Appl. Phys. 11(8), 1237–1247 (1978).
    [CrossRef]
  37. F. J. P. Chaves, “Application of adhesive bonding in PVC windows,” MSc Thesis (University of Porto, Portugal, 2005), http://www.scribd.com/doc/37203644/MSc-Thesis .
  38. Bodo Möller Chemie, “Technical data: PUR and epoxy” http://www.bm-chemie.de/content/de/download/pub/Elektrogiessharze_12_03_2009.pdf

2011

M. Moccia, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part I: numerical analysis,” Proc. SPIE 7753, 775384, 775384-4 (2011).
[CrossRef]

M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE 7753, 775383, 775383-4 (2011).
[CrossRef]

2009

A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, and A. Cusano, “Guided resonances in photonic quasicrystals,” Opt. Express 17(8), 6335–6346 (2009).
[PubMed]

S. Goodman, S. Foster, J. Van Velzen, and H. Mendis, “Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia,” Proc. SPIE 7503, 75034L1 (2009).

S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland) 9(6), 4446–4454 (2009).
[CrossRef]

2008

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[CrossRef]

2007

A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers 82, 1450–1457 (2007).

T. Pritz, “The Poisson’s loss factor of solid viscoelastic materials,” J. Sound Vibrat. 306(3-5), 790–802 (2007).
[CrossRef]

2005

S. Fosters, A. Tikhomirova, M. Milnesa, J. van Velzena, and G. Hardyb, “A fibre laser hydrophone,” Proc. SPIE 5855, 627–630 (2005).
[CrossRef]

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

H. Yokosuka, S. Tanaka, and N. Takahashi, “Time-division multiplexing operation of temperature-compensated fiber Bragg grating underwater acoustic sensor array with feedback control,” Acoust. Sci. Technol. 26(5), 456–458 (2005).
[CrossRef]

2004

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[CrossRef]

2001

2000

Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating,” Electron. Lett. 36(6), 564–566 (2000).
[CrossRef]

D. J. Hill and P. J. Nash, “In-water acoustic response of a coated DFB fibre laser sensor,” Proc. SPIE 4185, 33–36 (2000).

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[CrossRef] [PubMed]

1999

N. Takahashi, K. Tetsumura, and S. Takahashi, “Multipoint detection of acoustical wave in water with WDM fiber Bragg grating sensor,” Proc. SPIE 3740, 270–273 (1999).
[CrossRef]

D. J. Hill and G. A. Cranch, “Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating,” Electron. Lett. 35(15), 1268–1269 (1999).
[CrossRef]

1997

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4(6), 691–694 (1997).
[CrossRef]

1995

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B Condens. Matter 52(11), 7982–7986 (1995).
[CrossRef] [PubMed]

1979

1978

F. A. Khayyat and P. Stanley, “The dependence of the mechanical, physical and optical properties of Araldite CT200/HT 907 on temperature over the range −10°C to 70°C,” J. Phys. D Appl. Phys. 11(8), 1237–1247 (1978).
[CrossRef]

1975

G. M. L. Gladwell and D. K. Vijay, “Natural frequencies of free finite length circular cylinders,” J. Sound Vibrat. 42(3), 387–397 (1975).
[CrossRef]

1961

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Balbi, M.

A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers 82, 1450–1457 (2007).

Balzarini, S.

A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers 82, 1450–1457 (2007).

Bernini, R.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

Campopiano, S.

A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, and A. Cusano, “Guided resonances in photonic quasicrystals,” Opt. Express 17(8), 6335–6346 (2009).
[PubMed]

S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland) 9(6), 4446–4454 (2009).
[CrossRef]

A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers 82, 1450–1457 (2007).

Castaldi, G.

Chiang, K. S.

Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating,” Electron. Lett. 36(6), 564–566 (2000).
[CrossRef]

Consales, M.

M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE 7753, 775383, 775383-4 (2011).
[CrossRef]

Cranch, G. A.

D. J. Hill and G. A. Cranch, “Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating,” Electron. Lett. 35(15), 1268–1269 (1999).
[CrossRef]

Cusano, A.

M. Moccia, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part I: numerical analysis,” Proc. SPIE 7753, 775384, 775384-4 (2011).
[CrossRef]

M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE 7753, 775383, 775383-4 (2011).
[CrossRef]

A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, and A. Cusano, “Guided resonances in photonic quasicrystals,” Opt. Express 17(8), 6335–6346 (2009).
[PubMed]

S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland) 9(6), 4446–4454 (2009).
[CrossRef]

A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers 82, 1450–1457 (2007).

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

Cutolo, A.

M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE 7753, 775383, 775383-4 (2011).
[CrossRef]

M. Moccia, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part I: numerical analysis,” Proc. SPIE 7753, 775384, 775384-4 (2011).
[CrossRef]

S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland) 9(6), 4446–4454 (2009).
[CrossRef]

A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers 82, 1450–1457 (2007).

D’Addio, S.

A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers 82, 1450–1457 (2007).

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[CrossRef]

de Matos, C. J. S.

Dong, X.

Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating,” Electron. Lett. 36(6), 564–566 (2000).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Foster, S.

S. Goodman, S. Foster, J. Van Velzen, and H. Mendis, “Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia,” Proc. SPIE 7503, 75034L1 (2009).

Fosters, S.

S. Fosters, A. Tikhomirova, M. Milnesa, J. van Velzena, and G. Hardyb, “A fibre laser hydrophone,” Proc. SPIE 5855, 627–630 (2005).
[CrossRef]

Galdi, V.

M. Moccia, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part I: numerical analysis,” Proc. SPIE 7753, 775384, 775384-4 (2011).
[CrossRef]

A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, and A. Cusano, “Guided resonances in photonic quasicrystals,” Opt. Express 17(8), 6335–6346 (2009).
[PubMed]

Gallina, I.

Giordano, M.

M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE 7753, 775383, 775383-4 (2011).
[CrossRef]

S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland) 9(6), 4446–4454 (2009).
[CrossRef]

A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers 82, 1450–1457 (2007).

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

Gladwell, G. M. L.

G. M. L. Gladwell and D. K. Vijay, “Natural frequencies of free finite length circular cylinders,” J. Sound Vibrat. 42(3), 387–397 (1975).
[CrossRef]

Goodman, S.

S. Goodman, S. Foster, J. Van Velzen, and H. Mendis, “Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia,” Proc. SPIE 7503, 75034L1 (2009).

Guo, Z.

Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating,” Electron. Lett. 36(6), 564–566 (2000).
[CrossRef]

Hardyb, G.

S. Fosters, A. Tikhomirova, M. Milnesa, J. van Velzena, and G. Hardyb, “A fibre laser hydrophone,” Proc. SPIE 5855, 627–630 (2005).
[CrossRef]

Hill, D. J.

D. J. Hill and P. J. Nash, “In-water acoustic response of a coated DFB fibre laser sensor,” Proc. SPIE 4185, 33–36 (2000).

D. J. Hill and G. A. Cranch, “Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating,” Electron. Lett. 35(15), 1268–1269 (1999).
[CrossRef]

Hinckley, S.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[CrossRef]

Hirose, A.

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4(6), 691–694 (1997).
[CrossRef]

Hocker, G. B.

Iadicicco, A.

M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE 7753, 775383, 775383-4 (2011).
[CrossRef]

Imamura, K.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[CrossRef] [PubMed]

Khayyat, F. A.

F. A. Khayyat and P. Stanley, “The dependence of the mechanical, physical and optical properties of Araldite CT200/HT 907 on temperature over the range −10°C to 70°C,” J. Phys. D Appl. Phys. 11(8), 1237–1247 (1978).
[CrossRef]

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[CrossRef]

Lanza, G.

S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland) 9(6), 4446–4454 (2009).
[CrossRef]

Laudati, A.

S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland) 9(6), 4446–4454 (2009).
[CrossRef]

Liu, Y.

Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating,” Electron. Lett. 36(6), 564–566 (2000).
[CrossRef]

Margulis, W.

Mendis, H.

S. Goodman, S. Foster, J. Van Velzen, and H. Mendis, “Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia,” Proc. SPIE 7503, 75034L1 (2009).

Milnesa, M.

S. Fosters, A. Tikhomirova, M. Milnesa, J. van Velzena, and G. Hardyb, “A fibre laser hydrophone,” Proc. SPIE 5855, 627–630 (2005).
[CrossRef]

Minardo, A.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

Moccia, M.

M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE 7753, 775383, 775383-4 (2011).
[CrossRef]

M. Moccia, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part I: numerical analysis,” Proc. SPIE 7753, 775384, 775384-4 (2011).
[CrossRef]

Nash, P. J.

D. J. Hill and P. J. Nash, “In-water acoustic response of a coated DFB fibre laser sensor,” Proc. SPIE 4185, 33–36 (2000).

Parente, G.

S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland) 9(6), 4446–4454 (2009).
[CrossRef]

Pisco, M.

M. Moccia, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part I: numerical analysis,” Proc. SPIE 7753, 775384, 775384-4 (2011).
[CrossRef]

M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE 7753, 775383, 775383-4 (2011).
[CrossRef]

A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, and A. Cusano, “Guided resonances in photonic quasicrystals,” Opt. Express 17(8), 6335–6346 (2009).
[PubMed]

Pritz, T.

T. Pritz, “The Poisson’s loss factor of solid viscoelastic materials,” J. Sound Vibrat. 306(3-5), 790–802 (2007).
[CrossRef]

Ricciardi, A.

Sakoda, K.

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B Condens. Matter 52(11), 7982–7986 (1995).
[CrossRef] [PubMed]

Stanley, P.

F. A. Khayyat and P. Stanley, “The dependence of the mechanical, physical and optical properties of Araldite CT200/HT 907 on temperature over the range −10°C to 70°C,” J. Phys. D Appl. Phys. 11(8), 1237–1247 (1978).
[CrossRef]

Stubbe, R.

Takahashi, N.

H. Yokosuka, S. Tanaka, and N. Takahashi, “Time-division multiplexing operation of temperature-compensated fiber Bragg grating underwater acoustic sensor array with feedback control,” Acoust. Sci. Technol. 26(5), 456–458 (2005).
[CrossRef]

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[CrossRef] [PubMed]

N. Takahashi, K. Tetsumura, and S. Takahashi, “Multipoint detection of acoustical wave in water with WDM fiber Bragg grating sensor,” Proc. SPIE 3740, 270–273 (1999).
[CrossRef]

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4(6), 691–694 (1997).
[CrossRef]

Takahashi, S.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[CrossRef] [PubMed]

N. Takahashi, K. Tetsumura, and S. Takahashi, “Multipoint detection of acoustical wave in water with WDM fiber Bragg grating sensor,” Proc. SPIE 3740, 270–273 (1999).
[CrossRef]

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4(6), 691–694 (1997).
[CrossRef]

Tanaka, S.

H. Yokosuka, S. Tanaka, and N. Takahashi, “Time-division multiplexing operation of temperature-compensated fiber Bragg grating underwater acoustic sensor array with feedback control,” Acoust. Sci. Technol. 26(5), 456–458 (2005).
[CrossRef]

Tetsumura, K.

N. Takahashi, K. Tetsumura, and S. Takahashi, “Multipoint detection of acoustical wave in water with WDM fiber Bragg grating sensor,” Proc. SPIE 3740, 270–273 (1999).
[CrossRef]

Tikhomirova, A.

S. Fosters, A. Tikhomirova, M. Milnesa, J. van Velzena, and G. Hardyb, “A fibre laser hydrophone,” Proc. SPIE 5855, 627–630 (2005).
[CrossRef]

Torres, P.

Valente, L. C. G.

Van Velzen, J.

S. Goodman, S. Foster, J. Van Velzen, and H. Mendis, “Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia,” Proc. SPIE 7503, 75034L1 (2009).

van Velzena, J.

S. Fosters, A. Tikhomirova, M. Milnesa, J. van Velzena, and G. Hardyb, “A fibre laser hydrophone,” Proc. SPIE 5855, 627–630 (2005).
[CrossRef]

Vijay, D. K.

G. M. L. Gladwell and D. K. Vijay, “Natural frequencies of free finite length circular cylinders,” J. Sound Vibrat. 42(3), 387–397 (1975).
[CrossRef]

Wild, G.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[CrossRef]

Yokosuka, H.

H. Yokosuka, S. Tanaka, and N. Takahashi, “Time-division multiplexing operation of temperature-compensated fiber Bragg grating underwater acoustic sensor array with feedback control,” Acoust. Sci. Technol. 26(5), 456–458 (2005).
[CrossRef]

Yoshimura, K.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[CrossRef] [PubMed]

Zeni, L.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating,” Electron. Lett. 36(6), 564–566 (2000).
[CrossRef]

Acoust. Sci. Technol.

H. Yokosuka, S. Tanaka, and N. Takahashi, “Time-division multiplexing operation of temperature-compensated fiber Bragg grating underwater acoustic sensor array with feedback control,” Acoust. Sci. Technol. 26(5), 456–458 (2005).
[CrossRef]

Appl. Opt.

Electron. Lett.

D. J. Hill and G. A. Cranch, “Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating,” Electron. Lett. 35(15), 1268–1269 (1999).
[CrossRef]

Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating,” Electron. Lett. 36(6), 564–566 (2000).
[CrossRef]

IEEE Sens. J.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Phys. D Appl. Phys.

F. A. Khayyat and P. Stanley, “The dependence of the mechanical, physical and optical properties of Araldite CT200/HT 907 on temperature over the range −10°C to 70°C,” J. Phys. D Appl. Phys. 11(8), 1237–1247 (1978).
[CrossRef]

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[CrossRef]

J. Sound Vibrat.

G. M. L. Gladwell and D. K. Vijay, “Natural frequencies of free finite length circular cylinders,” J. Sound Vibrat. 42(3), 387–397 (1975).
[CrossRef]

T. Pritz, “The Poisson’s loss factor of solid viscoelastic materials,” J. Sound Vibrat. 306(3-5), 790–802 (2007).
[CrossRef]

Opt. Express

Opt. Rev.

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4(6), 691–694 (1997).
[CrossRef]

Phys. Rev.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. B Condens. Matter

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B Condens. Matter 52(11), 7982–7986 (1995).
[CrossRef] [PubMed]

Proc. SPIE

M. Moccia, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part I: numerical analysis,” Proc. SPIE 7753, 775384, 775384-4 (2011).
[CrossRef]

M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE 7753, 775383, 775383-4 (2011).
[CrossRef]

D. J. Hill and P. J. Nash, “In-water acoustic response of a coated DFB fibre laser sensor,” Proc. SPIE 4185, 33–36 (2000).

S. Fosters, A. Tikhomirova, M. Milnesa, J. van Velzena, and G. Hardyb, “A fibre laser hydrophone,” Proc. SPIE 5855, 627–630 (2005).
[CrossRef]

S. Goodman, S. Foster, J. Van Velzen, and H. Mendis, “Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia,” Proc. SPIE 7503, 75034L1 (2009).

N. Takahashi, K. Tetsumura, and S. Takahashi, “Multipoint detection of acoustical wave in water with WDM fiber Bragg grating sensor,” Proc. SPIE 3740, 270–273 (1999).
[CrossRef]

Sensors (Basel Switzerland)

S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland) 9(6), 4446–4454 (2009).
[CrossRef]

Sensors Transducers

A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers 82, 1450–1457 (2007).

Ultrasonics

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[CrossRef] [PubMed]

Other

W. Thongnum, N. Takahashi, and S. Takahashi, “Temperature stabilization of fiber Bragg grating vibration sensor,” in OFS 2002, 15th Optical Fiber Sensors Conference Technical Digest, 2002. (2002), Vol. 1, pp. 223–226.

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1990).

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, 1987).

F. Ihlenburg, Finite Element Analysis of Acoustic Scattering (Springer, 1998).

S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).

“Damival resins: polyurethane and epoxy systems for potting and encapsulation,” www.sibel.bg/upl_doc/DAMIVAL_E.pdf .

“Huntsman advanced materials,” www.huntsmanservice.com/Product_Finder/ui/PSDetailCompositeList.do?pInfoSBUId=9&PCId=1663

“eFunda polymer material properties,” http://www.efunda.com/materials/polymers/properties/polymer_datasheet.cfm?MajorID=PU&MinorID=1 .

COMSOL Multiphysics, User’s Guide (COMSOL AB, 2008).

F. J. P. Chaves, “Application of adhesive bonding in PVC windows,” MSc Thesis (University of Porto, Portugal, 2005), http://www.scribd.com/doc/37203644/MSc-Thesis .

Bodo Möller Chemie, “Technical data: PUR and epoxy” http://www.bm-chemie.de/content/de/download/pub/Elektrogiessharze_12_03_2009.pdf

A. Sorathia, “Polyurethane-epoxy interpenetrating polymer network acoustic damping material,” U.S. Patent No. 5,331,062 (19 July 1994).

C. F. Beards, Structural Vibration Analysis and Damping (Butterworth Heinemann, 1996).

A. Guran, J. Ripoche, and F. Ziegler, Acoustic Interactions with Submerged Elastic Structures (World Scientific, 1996).

Supplementary Material (1)

» Media 1: MPG (1400 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic description of the operational scenario for the underwater optical-fiber hydrophone (details in the text).

Fig. 2
Fig. 2

3-D geometry considered in the numerical simulations (details in the text).

Fig. 3
Fig. 3

(a) Spectra of the strain components (parameters detailed in the text). (b), (c) Magnified details along the strain and frequency axes, respectively.

Fig. 4
Fig. 4

Pressure distribution in water and z-strain distribution on the cylinder surface, for different frequencies of the acoustic wave (see also the animation Media 1), away from resonances: (a) 10 kHz, (b) 20 kHz, (c) 30 kHz, and around the second resonance: (d) 14.792 and (e) 14.800kHz

Fig. 5
Fig. 5

(a) Sensitivity (cf. Eq. (13)) and (b) sensitivity gain (cf. Eq. (14)) spectra. The inset in (a) highlights the Fano-type line-shape of the sensitivity around the resonant frequencies.

Fig. 6
Fig. 6

Deformed geometry and z-strain distribution (in color scale) of the resonant modes.

Fig. 7
Fig. 7

Sensitivity gain spectra, for different coating heights.

Fig. 8
Fig. 8

(a) Resonant frequency as a function of coating height, for different peaks. (b) First resonant frequency as a function of coating height, for various coating radii.

Fig. 9
Fig. 9

Sensitivity gain spectra for different coating radii.

Fig. 10
Fig. 10

(a) Resonant frequency as a function of coating radius, for various peaks. (b) First resonant frequency as a function of coating radius, for various coating heights.

Fig. 11
Fig. 11

(a) Sensitivity gain at first local minimum as a function of coating radius. (b) Sensitivity gain spectra around the first local minimum, for different coating radii.

Fig. 12
Fig. 12

Sensitivity gain spectra, by varying (a) the coating Young’s modulus E and density ρ (for ν = 0.3 ), and (b) the coating Poisson’s ratio ν (for E = 78 MPa and ρ = 1180 kg/m3).

Fig. 13
Fig. 13

Effects of the structural damping on the sensitivity gain spectrum, for a ring-shaped coating featuring ring-shaped coating featuring R C / R f = 20 , h = 4 cm, ν = 0.3 , ρ = 1180 kg/m3, Re ( E ) = 78 MPa, and η = 0. 1 .

Fig. 14
Fig. 14

(a) Sensitivity gain spectrum (magnified in the inset, around a resonant peak) pertaining to a ring-shaped coating featuring R C / R f = 20 , h = 3 cm, ν = 0.3 , ρ = 1180 kg/m3, E = 78 MPa, and no damping, for various sound-wave incidence directions. (b) Sensitivity gain angular response at selected frequencies.

Fig. 15
Fig. 15

Numerical and experimental sensitivity gain of a coated FBG respect to bare fiber vs frequency (a) with the Damival ® E 13650 coating and (b) with the Araldite ® DBF coating. “Elaborated” data take into account the finite duration of the acoustic pulse

Tables (3)

Tables Icon

Table 1 Mechanical and Acoustic Constants of the Analyzed Structure

Tables Icon

Table 2 Elastic Properties of the Ring-Shaped Coating

Tables Icon

Table 3 Properties of the Ring-Shaped Coatings

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

( P , ρ ) = ( P , ρ ) + ( P 0 , ρ 0 ) ,
ρ t + ρ 0 ( U t ) = 0 , ρ 0 2 U t 2 = P ,
P = c 2 ρ ,
2 P 1 c 2 2 P t 2 = 0 ,
2 p + ( ω c ) 2 p = 0 ,
μ 2 U + ( λ + μ ) ( U ) + F = ρ s 2 U t 2 ,
λ = ν E ( 1 + ν ) ( 1 2 ν ) , μ = E 2 ( 1 + ν ) .
ε i j = 1 2 ( U i j + U j i ) ,
σ = D ε ,
μ 2 u + ( λ + μ ) ( u ) + ρ s ω 2 u = f ,
ρ 0 ω 2 u n = p n .
σ n = p .
σ = 0.
σ c = σ f , U c = U f ,
Δ λ λ 0 = ε z n e f f 2 2 [ p 11 ε x + p 12 ( ε z + ε y ) ] ,
S = Δ λ λ 0 p 0 = 1 p 0 { ε z n e f f 2 2 [ p 11 ε x + p 12 ( ε z + ε y ) ] } ,
Sensitivity Gain = 20 log 10 ( | S S B A R E | ) ,
Z = ρ ' c C = ρ ' K ρ ' = ρ ' E 3 ( 1-2 ν ) ,

Metrics