Abstract

An etch-free fabrication technique for creating low loss silicon waveguides in the silicon-on-insulator material system is proposed and demonstrated. The approach consists of local oxidation of a silicon-on-insulator chip covered with a e-beam patterned hydrogen silsesquioxane mask. A single oxidation step converts hydrogen silsesquioxane to a glass-like compound and simultaneously defines the waveguides, bypassing the need for any wet or dry etching steps. The spectral response of ring resonators fabricated using this technique was used to characterize the waveguide losses. Intrinsic Q-factors as high as 1.57 × 106, corresponding to a waveguide loss of 0.35dB/cm, were measured.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  2. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
    [CrossRef] [PubMed]
  3. B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express 18(18), 18592–18597 (2010).
    [CrossRef] [PubMed]
  4. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48(5), 958–963 (2009).
    [CrossRef] [PubMed]
  5. M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins,” J. Electrochem. Soc. 145(8), 2861–2866 (1998).
    [CrossRef]
  6. H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
    [CrossRef]
  7. C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
    [CrossRef]
  8. W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” .
    [CrossRef]
  9. W. R. McKinnon, D. X. Xu, C. Storey, E. Post, A. Densmore, A. Delâge, P. Waldron, J. H. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express 17(21), 18971–18982 (2009).
    [CrossRef] [PubMed]
  10. M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
    [CrossRef] [PubMed]
  11. J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38(9-11), 781–797 (2007).
    [CrossRef]
  12. S. Blaize, F. Gesuele, I. Stefanon, A. Bruyant, G. Lérondel, P. Royer, B. Martin, A. Morand, P. Benech, and J.-M. Fedeli, “Real-space observation of spectral degeneracy breaking in a waveguide-coupled disk microresonator,” Opt. Lett. 35(19), 3168–3170 (2010).
    [CrossRef] [PubMed]
  13. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [CrossRef]
  14. D. M. Shyroki, “Exact equivalent straight waveguide model for bent and twisted waveguides,” IEEE Trans. Microw. Theory Tech. 56(2), 414–419 (2008).
    [CrossRef]

2010

2009

2008

D. M. Shyroki, “Exact equivalent straight waveguide model for bent and twisted waveguides,” IEEE Trans. Microw. Theory Tech. 56(2), 414–419 (2008).
[CrossRef]

2007

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38(9-11), 781–797 (2007).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
[CrossRef] [PubMed]

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
[CrossRef]

2006

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

2002

1998

M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins,” J. Electrochem. Soc. 145(8), 2861–2866 (1998).
[CrossRef]

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[CrossRef]

Barwicz, T.

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
[CrossRef]

Benech, P.

Blaize, S.

Borselli, M.

Bruyant, A.

Cardenas, J.

Chen, E.

Chen, L.

Ctyroký, J.

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38(9-11), 781–797 (2007).
[CrossRef]

Dalton, L. R.

Delâge, A.

Densmore, A.

Desiatov, B.

Fedeli, J.-M.

Georgiev, Y. M.

W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” .
[CrossRef]

Gesuele, F.

Goykhman, I.

Grove, C. M.

M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins,” J. Electrochem. Soc. 145(8), 2861–2866 (1998).
[CrossRef]

Henschel, W.

W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” .
[CrossRef]

Holzwarth, C. W.

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
[CrossRef]

Janz, S.

Johnson, T. J.

Koch, T. L.

Kurihara, K.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[CrossRef]

Kurz, H.

W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” .
[CrossRef]

Lérondel, G.

Levy, U.

Li, J.

Lipson, M.

Loboda, M. J.

M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins,” J. Electrochem. Soc. 145(8), 2861–2866 (1998).
[CrossRef]

Martin, B.

McKinnon, W. R.

Morand, A.

Nagase, M.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[CrossRef]

Namatsu, H.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[CrossRef]

Pafchek, R.

Painter, O.

Poitras, C. B.

Post, E.

Preston, K.

Rabiei, P.

Richter, I.

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38(9-11), 781–797 (2007).
[CrossRef]

Robinson, J. T.

Royer, P.

Schmid, J. H.

Schneider, R. F.

M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins,” J. Electrochem. Soc. 145(8), 2861–2866 (1998).
[CrossRef]

Shyroki, D. M.

D. M. Shyroki, “Exact equivalent straight waveguide model for bent and twisted waveguides,” IEEE Trans. Microw. Theory Tech. 56(2), 414–419 (2008).
[CrossRef]

Šinor, M.

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38(9-11), 781–797 (2007).
[CrossRef]

Smith, H. I.

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
[CrossRef]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Stefanon, I.

Steier, W. H.

Storey, C.

Tummidi, R.

Waldron, P.

Webster, M. A.

Xu, D. X.

Yamaguchi, T.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[CrossRef]

Yamazaki, K.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[CrossRef]

Zhang, C.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

D. M. Shyroki, “Exact equivalent straight waveguide model for bent and twisted waveguides,” IEEE Trans. Microw. Theory Tech. 56(2), 414–419 (2008).
[CrossRef]

J. Electrochem. Soc.

M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins,” J. Electrochem. Soc. 145(8), 2861–2866 (1998).
[CrossRef]

J. Lightwave Technol.

J. Vac. Sci. Technol. B

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B 25(6), 2658–2661 (2007).
[CrossRef]

Microelectron. Eng.

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, “Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41–42, 331–334 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38(9-11), 781–797 (2007).
[CrossRef]

Other

W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Etch-free fabrication process for creating silicon waveguides in SOI.

Fig. 2
Fig. 2

(a) Thick HSQ after processing in standard exposure and development recipe which results in a clogged waveguide/ring gap due to proximity effects. Note that the sidewalls are also sloping. (b) Vertical sidewalls and clear gap as a result of using a high contrast HSQ development recipe.

Fig. 3
Fig. 3

Different waveguide profiles obtained by changing the oxidation time and mask thickness: (a) Rib waveguide. (b) Buried channel waveguide.

Fig. 4
Fig. 4

(a) Normalized transmission through etch-free ring loaded waveguide. (b) Resonant dip at 1598nm with FWHM of 1.3pm. (c) Resonance at 1604nm exhibits mode splitting with FWHM of 1.1pm.

Fig. 5
Fig. 5

Waveguide profile (a) and associated quasi-TE mode (b) for the loaded ring resonator. The upper cladding of the waveguide was removed with a wet oxide etch to facilitate the profile measurement.

Fig. 6
Fig. 6

Calculated loss corresponding to each of the resonant dips shown in Fig. 4. The lowest measured loss of 0.35dB corresponds to the 1.1pm double resonance dip in Fig. 4(b) and corresponds to an intrinsic Q factor of 1.57 × 106. The error bars are calculated assuming ± 100fm error in measuring the FWHM.

Fig. 7
Fig. 7

Estimated bending loss of waveguide profile shown in Fig. 5.

Metrics