Abstract

We numerically investigate supercontinuum generation in quasi-phase-matched waveguides using a single-envelope approach to capture second and third order nonlinear processes involved in the generation of octave-spanning spectra. Simulations are shown to agree with experimental results in reverse-proton-exchanged lithium-niobate waveguides. The competition between χ (2) and χ (3) self phase modulation effects is discussed. Chirped quasi-phasematched gratings and stimulated Raman scattering are shown to enhance spectral broadening, and the pulse dynamics involved in the broadening processes are explained.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
    [CrossRef] [PubMed]
  2. T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev, G. Tempea, T. Udem, C. Gohle, T. W. Hänsch, W. Lehnert, M. Scherer, and F. Krausz, “Monolithic carrier-envelope phase-stabilization scheme,” Opt. Lett. 30, 332–334 (2005).
    [CrossRef] [PubMed]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  4. J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
    [CrossRef]
  5. C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27, 2687–2699 (2010).
    [CrossRef]
  6. C. Langrock, S. Kumar, J. McGeehan, A. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579–2592 (2006).
    [CrossRef]
  7. X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phase-matched AlGaAs waveguides,” Opt. Express 13, 10742–10748 (2005).
    [CrossRef] [PubMed]
  8. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
    [CrossRef]
  9. R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. thesis, Stanford University (2006), http://nlo.stanford.edu/system/files/dissertations/rostislav_roussev_thesis_december_2006.pdf .
  10. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
    [CrossRef]
  11. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modelling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15, 5382–5387 (2007).
    [CrossRef] [PubMed]
  12. M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
    [CrossRef]
  13. S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B27, 1707–1711 (2010).
  14. G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18, 534–539 (2001).
    [CrossRef]
  15. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  16. X. Liu, L. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
    [CrossRef]
  17. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006).
    [CrossRef] [PubMed]
  18. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).
  19. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007).
    [CrossRef] [PubMed]
  20. M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
    [CrossRef]
  21. J. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  22. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
    [CrossRef]
  23. C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
    [CrossRef] [PubMed]
  24. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
    [CrossRef] [PubMed]
  25. R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [CrossRef]
  26. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  27. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
    [CrossRef]
  28. C. R. Phillips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-Referenced Frequency Comb From a Tm-fiber Amplifier via PPLN Waveguide Supercontinuum Generation,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA5.
  29. A. S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158, 433 (1967).
    [CrossRef]
  30. P. J. Delfyett, R. Dorsinville, and R. R. Alfano, “Spectral and temporal measurements of the third-order nonlinear susceptibility of LiNbO3 using picosecond Raman-induce phase-conjugate spectroscopy,” Phys. Rev. B 40, 1885 (1989).
    [CrossRef]
  31. N. Surovtsev, V. Malinovskii, A. Pugachev, and A. Shebanin, “The nature of low-frequency raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
    [CrossRef]
  32. R. Schiek, R. Stegeman, and G. I. Stegeman, “Measurement of third-order nonlinear susceptibility tensor elements in lithium niobate,” in “Frontiers in Optics,” (Optical Society of America, 2005), p. JWA74.
  33. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
    [CrossRef]
  34. C. Conti, S. Trillo, P. Di Trapani, J. Kilius, A. Bramati, S. Minardi, W. Chinaglia, and G. Valiulis, “Effective lensing effects in parametric frequency conversion,” J. Opt. Soc. Am. B 19, 852–859 (2002).
    [CrossRef]
  35. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  36. R. Boyd, “Stimulated Raman scattering and stimulated Rayleigh-Wing scattering,” in “Nonlinear Optics”, R. Boyd (Academic, 2008).
    [CrossRef]
  37. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “High-power mid-infrared optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO3,” presented at the Conference on Lasers and Electro-optics (2011).
  38. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

2010

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
[CrossRef]

S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B27, 1707–1711 (2010).

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[CrossRef]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[CrossRef]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
[CrossRef] [PubMed]

C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
[CrossRef] [PubMed]

C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27, 2687–2699 (2010).
[CrossRef]

2008

2007

2006

2005

2004

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[CrossRef]

2003

N. Surovtsev, V. Malinovskii, A. Pugachev, and A. Shebanin, “The nature of low-frequency raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[CrossRef]

2002

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).

C. Conti, S. Trillo, P. Di Trapani, J. Kilius, A. Bramati, S. Minardi, W. Chinaglia, and G. Valiulis, “Effective lensing effects in parametric frequency conversion,” J. Opt. Soc. Am. B 19, 852–859 (2002).
[CrossRef]

2001

1999

1997

1996

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1989

P. J. Delfyett, R. Dorsinville, and R. R. Alfano, “Spectral and temporal measurements of the third-order nonlinear susceptibility of LiNbO3 using picosecond Raman-induce phase-conjugate spectroscopy,” Phys. Rev. B 40, 1885 (1989).
[CrossRef]

1986

1967

A. S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158, 433 (1967).
[CrossRef]

Afeyan, B.

Alfano, R. R.

P. J. Delfyett, R. Dorsinville, and R. R. Alfano, “Spectral and temporal measurements of the third-order nonlinear susceptibility of LiNbO3 using picosecond Raman-induce phase-conjugate spectroscopy,” Phys. Rev. B 40, 1885 (1989).
[CrossRef]

Apolonski, A.

Ashihara, S.

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).

Bache, M.

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[CrossRef]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[CrossRef]

M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007).
[CrossRef] [PubMed]

Bang, O.

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[CrossRef]

M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007).
[CrossRef] [PubMed]

Barker, A. S.

A. S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158, 433 (1967).
[CrossRef]

Baronio, F.

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

Boyd, R.

R. Boyd, “Stimulated Raman scattering and stimulated Rayleigh-Wing scattering,” in “Nonlinear Optics”, R. Boyd (Academic, 2008).
[CrossRef]

R. Boyd, “Stimulated Raman scattering and stimulated Rayleigh-Wing scattering,” in “Nonlinear Optics”, R. Boyd (Academic, 2008).
[CrossRef]

Bramati, A.

Brambilla, G.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Charbonneau-Lefort, M.

Chinaglia, W.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Conforti, M.

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
[CrossRef]

Conti, C.

De Angelis, C.

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

Delfyett, P. J.

P. J. Delfyett, R. Dorsinville, and R. R. Alfano, “Spectral and temporal measurements of the third-order nonlinear susceptibility of LiNbO3 using picosecond Raman-induce phase-conjugate spectroscopy,” Phys. Rev. B 40, 1885 (1989).
[CrossRef]

DeSalvo, R.

R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Di Trapani, P.

Dorsinville, R.

P. J. Delfyett, R. Dorsinville, and R. R. Alfano, “Spectral and temporal measurements of the third-order nonlinear susceptibility of LiNbO3 using picosecond Raman-induce phase-conjugate spectroscopy,” Phys. Rev. B 40, 1885 (1989).
[CrossRef]

Dudley, J. M.

Ebendorff-Heidepriem, H.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Fejer, M. M.

C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27, 2687–2699 (2010).
[CrossRef]

C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
[CrossRef] [PubMed]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
[CrossRef] [PubMed]

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
[CrossRef]

C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
[CrossRef] [PubMed]

C. Langrock, S. Kumar, J. McGeehan, A. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579–2592 (2006).
[CrossRef]

X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phase-matched AlGaAs waveguides,” Opt. Express 13, 10742–10748 (2005).
[CrossRef] [PubMed]

G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18, 534–539 (2001).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

C. R. Phillips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-Referenced Frequency Comb From a Tm-fiber Amplifier via PPLN Waveguide Supercontinuum Generation,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA5.

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “High-power mid-infrared optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO3,” presented at the Conference on Lasers and Electro-optics (2011).

Feng, X.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Fermann, M. E.

C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
[CrossRef] [PubMed]

C. R. Phillips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-Referenced Frequency Comb From a Tm-fiber Amplifier via PPLN Waveguide Supercontinuum Generation,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA5.

Finazzi, V.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Flanagan, J.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Fuji, T.

Gallmann, L.

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
[CrossRef] [PubMed]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “High-power mid-infrared optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO3,” presented at the Conference on Lasers and Electro-optics (2011).

Galvanauskas, A.

Genty, G.

Ghosh, G.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Gohle, C.

Gordon, J.

Hagan, D.

R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

Hänsch, T. W.

Harris, J. S.

Harter, D.

Hartl, I.

Heese, C.

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
[CrossRef] [PubMed]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “High-power mid-infrared optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO3,” presented at the Conference on Lasers and Electro-optics (2011).

Horak, P.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Imeshev, G.

Ito, R.

Jiang, J.

C. R. Phillips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-Referenced Frequency Comb From a Tm-fiber Amplifier via PPLN Waveguide Supercontinuum Generation,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA5.

Jundt, D. H.

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Keller, U.

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
[CrossRef] [PubMed]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “High-power mid-infrared optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO3,” presented at the Conference on Lasers and Electro-optics (2011).

Kibler, B.

Kilius, J.

Kinsler, P.

Kitamoto, A.

Kolesik, M.

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[CrossRef]

Kondo, T.

Kozlov, V. V.

S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B27, 1707–1711 (2010).

Krausz, F.

Kumar, S.

Kuo, P. S.

Kuroda, K.

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).

Langrock, C.

C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
[CrossRef] [PubMed]

C. Langrock, S. Kumar, J. McGeehan, A. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579–2592 (2006).
[CrossRef]

C. R. Phillips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-Referenced Frequency Comb From a Tm-fiber Amplifier via PPLN Waveguide Supercontinuum Generation,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA5.

Lehnert, W.

Leong, J.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Liu, X.

Loudon, R.

A. S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158, 433 (1967).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Malinovskii, V.

N. Surovtsev, V. Malinovskii, A. Pugachev, and A. Shebanin, “The nature of low-frequency raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[CrossRef]

McGeehan, J.

Minardi, S.

Moloney, J. V.

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[CrossRef]

Monro, T.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Moses, J.

Nishina, J.

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).

Palik, E. D.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Petropoulos, P.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Phillips, C. R.

C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27, 2687–2699 (2010).
[CrossRef]

C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
[CrossRef] [PubMed]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
[CrossRef] [PubMed]

C. R. Phillips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-Referenced Frequency Comb From a Tm-fiber Amplifier via PPLN Waveguide Supercontinuum Generation,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA5.

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “High-power mid-infrared optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO3,” presented at the Conference on Lasers and Electro-optics (2011).

Poletti, F.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Price, J.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Pugachev, A.

N. Surovtsev, V. Malinovskii, A. Pugachev, and A. Shebanin, “The nature of low-frequency raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[CrossRef]

Qian, L.

Rauschenberger, J.

Richardson, D.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Said, A.

R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Scaccabarozzi, L.

Scherer, M.

Schiek, R.

R. Schiek, R. Stegeman, and G. I. Stegeman, “Measurement of third-order nonlinear susceptibility tensor elements in lithium niobate,” in “Frontiers in Optics,” (Optical Society of America, 2005), p. JWA74.

Shebanin, A.

N. Surovtsev, V. Malinovskii, A. Pugachev, and A. Shebanin, “The nature of low-frequency raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[CrossRef]

Sheik-Bahae, M.

R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Shimura, T.

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).

Shirane, M.

Shoji, I.

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

R. Schiek, R. Stegeman, and G. I. Stegeman, “Measurement of third-order nonlinear susceptibility tensor elements in lithium niobate,” in “Frontiers in Optics,” (Optical Society of America, 2005), p. JWA74.

Stegeman, R.

R. Schiek, R. Stegeman, and G. I. Stegeman, “Measurement of third-order nonlinear susceptibility tensor elements in lithium niobate,” in “Frontiers in Optics,” (Optical Society of America, 2005), p. JWA74.

Surovtsev, N.

N. Surovtsev, V. Malinovskii, A. Pugachev, and A. Shebanin, “The nature of low-frequency raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[CrossRef]

Tempea, G.

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

Trillo, S.

Udem, T.

Valiulis, G.

Van Stryland, E.

R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Wabnitz, S.

S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B27, 1707–1711 (2010).

Willner, A.

Wise, F. W.

Yakovlev, V. S.

Yu, X.

Zhou, B. B.

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

IEEE Photon. J.

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B27, 1707–1711 (2010).

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
[CrossRef] [PubMed]

M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007).
[CrossRef] [PubMed]

J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006).
[CrossRef] [PubMed]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
[CrossRef] [PubMed]

C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
[CrossRef] [PubMed]

T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev, G. Tempea, T. Udem, C. Gohle, T. W. Hänsch, W. Lehnert, M. Scherer, and F. Krausz, “Monolithic carrier-envelope phase-stabilization scheme,” Opt. Lett. 30, 332–334 (2005).
[CrossRef] [PubMed]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

X. Liu, L. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[CrossRef]

J. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[CrossRef] [PubMed]

Opt. Quantum Electron.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[CrossRef]

Phys. Rev.

A. S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158, 433 (1967).
[CrossRef]

Phys. Rev. A

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[CrossRef]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

Phys. Rev. B

P. J. Delfyett, R. Dorsinville, and R. R. Alfano, “Spectral and temporal measurements of the third-order nonlinear susceptibility of LiNbO3 using picosecond Raman-induce phase-conjugate spectroscopy,” Phys. Rev. B 40, 1885 (1989).
[CrossRef]

Phys. Rev. E

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[CrossRef]

Phys. Solid State

N. Surovtsev, V. Malinovskii, A. Pugachev, and A. Shebanin, “The nature of low-frequency raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other

R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. thesis, Stanford University (2006), http://nlo.stanford.edu/system/files/dissertations/rostislav_roussev_thesis_december_2006.pdf .

C. R. Phillips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-Referenced Frequency Comb From a Tm-fiber Amplifier via PPLN Waveguide Supercontinuum Generation,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA5.

R. Schiek, R. Stegeman, and G. I. Stegeman, “Measurement of third-order nonlinear susceptibility tensor elements in lithium niobate,” in “Frontiers in Optics,” (Optical Society of America, 2005), p. JWA74.

R. Boyd, “Stimulated Raman scattering and stimulated Rayleigh-Wing scattering,” in “Nonlinear Optics”, R. Boyd (Academic, 2008).
[CrossRef]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “High-power mid-infrared optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO3,” presented at the Conference on Lasers and Electro-optics (2011).

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Output spectrum for the 1043-nm-case of Ref. [1], labeled with the range of periods in the linearly chirped QPM grating. The pulse energy is 3.45 nJ in all cases. (a) Experimentally measured, (b) numerically simulated using Eqs. (5). A QPM grating with a weak linear chirp from 7–8 μm is included for comparison, showing reduced spectral broadening.

Fig. 4
Fig. 4

Spectrum for several values of χE , with χR,pk = 0. The values for χE are given in the legend in units of pm2/V2; the other model parameters are the same as those used in Fig. 1(b).

Fig. 2
Fig. 2

Pulse evolution in the time-domain for the simulation shown in Fig. 1(b), with QPM period varied from 7–11. (a) The pulse amplitude; the color bar represents |A 0(z,t)|. (b) The phase of the first harmonic part of the pulse (colobar in radians).

Fig. 3
Fig. 3

(a) Spectrum versus position in the QPM grating, showing generation of spectral components > 1.4 μm from noise. (b) Simulated cross-FROG spectrogram (150 fs gate), plotted on a dB scale. The reference velocity v ref used in the simulation was the group velocity of the TM00 mode at 990 nm.

Fig. 5
Fig. 5

Spectrum for several values of χR,pk (in pm2/V2) with fixed χE + HR (0)χR,pk = 6.365 × 103 pm2/V2; the other model parameters are the same as those used in Fig. 1(b). For the dashed black line, quantum noise was neglected.

Fig. 7
Fig. 7

Measured imaginary and complex reconstructed stimulated Raman scattering transfer function for e-wave interactions in LiNbO3, based on our XZZ spontaneous Raman scattering measurement. The quality of the fit implies that a sum of Lorentzians is a suitable model for ℑ[HR ], so we calculate ℜ[HR ] from these fit parameters (dashed red line).

Fig. 6
Fig. 6

(a) Experimental data with 1580-nm-pumping from Ref. [1] (b) Simulated output spectrum corresponding to (a) for the TM00, TM10, and TM02 modes. Three slightly different values of χE have been assumed; these values are explained in the text. (c) Evolution of the spectrum of the TM00 mode through the waveguide (dB scale).

Tables (3)

Tables Icon

Table 2 Cascading Approximation Parameters at 1043 nm

Tables Icon

Table 3 Cascading Approximation Parameters at 1580 nm

Tables Icon

Table 1 Lorentzian Fit Parameters for HR (Ω)

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E ˜ ( x , y , z , ω ) = 1 2 n B n ( x , y , ω ) A ˜ n ( z , ω ω ref ) exp [ i ( β ref ω ref / v ref ) z ] ,
P ˜ N L ( ω ) / ɛ 0 = χ ( 2 ) ( ω , ω ' , ω ω ' ) E ˜ ( ω ' ) E ˜ ( ω ω ' ) d ω ' + χ ( 3 ) ( ω , ω ' , ω " , ω ω ' ω " ) E ˜ ( ω ' ) E ˜ ( ω " ) E ˜ ( ω ω ' ω " ) d ω ' d ω " .
Θ n p q ( ω , ω ' ) = χ ¯ ( 2 ) ( x , y ; ω , ω ' , ω ω ' ) B n ( x , y , ω ) B p ( x , y , ω ' ) B q ( x , y , ω ω ' ) d x d x y .
| B n ( x , y , ω ) | 2 d x d y = g n ( ω )
A ˜ n z + i [ β n β ref ω ω ref v ref i α n 2 ] A ˜ n = i ω 2 u g n β n c 2 { p , q m d m θ n p q [ A p A q 2 e i φ m + A p * A q e i φ m ] + p , q , r 3 θ n p q r χ E 8 [ A p A q * A r ] + p , q , r 3 θ n p q r χ R , p k 8 [ 1 [ [ A p A q * ] H R ] A r ] } ,
Δ k eff ( ω D F G , ω 2 ) = β eff ( S H ) ( ω D F G + ω 1 ) β eff ( F H ) ( ω 1 ) β 0 ( ω D F G ) K g .
Δ k eff ( ω D F G ) β 0 ( ω F H ) + ( ω D F G ω F H ) / v F H β 0 ( ω D F G ) ,
χ 0 ( 3 ) = 4 3 n 2 n F H 2 ɛ 0 c ,
χ cascade ( 3 ) = 16 π d eff 2 3 n S H λ F H 1 Δ k .
χ R , p k = n S n L ɛ 0 c λ S 3 π g S I L ,
g R 2 [ i g S Δ k R / 2 ( Δ k R / 2 ) 2 ] ,
A 0 , F H z + D ^ 0 , F H A 0 , F H = i ( ω 2 u g 0 β 0 c 2 ) ω F H × [ q , m d m θ q 00 exp i Δ k m , q 00 ( z ' ) d z ' A 0 , F H * A q , S H + 3 ( χ E + H R ( 0 ) χ R , p k ) 8 θ 0000 | A 0 , F H | 2 A 0 , F H ] A q , S H z + D ^ q , S H A q , S H = i ( ω 2 u g q β q c 2 ) ω S H × [ m d m θ q 00 exp i Δ k m , q 00 ( z ' ) d z ' A 0 , F H 2 2 + 6 ( χ E + H R ( 0 ) χ R , p k ) 8 θ q q 00 | A 0 , F H | 2 A q , S H ]
E ˜ ( x , y , z , ω ) 1 2 B ˜ 0 ( x , y , ω F H ) A 0 , F H ( z , ω ω F H ) exp i ( β 0 ( ω F H ) ω F H / v r e f ) + 1 2 q B ˜ q ( x , y , ω S H ) A q , S H ( z , ω ω S H ) exp i ( β q ( ω S H ) ω S H / v r e f )
Δ k m , q 00 ( z ) = β q ( 2 ω F H ) 2 β 0 ( ω F H ) m K g ( z )
A 0 , F H z + D ^ 0 , F H A 0 , F H = i ω F H g 0 , F H n 0 , F H c ( m , q d m 2 θ q 00 2 ω F H g q , S H n q , S H c 1 Δ k m , q 00 ( z ) ) | A 0 , F H | 2 A 0 , F H i ω F H g 0 , F H n 0 , F H c ( 3 θ 0000 ( χ E + H R ( 0 ) χ R , p k ) 8 ) | A 0 , F H | 2 A 0 , F H ,
χ total ( 3 ) ( z ) = χ E + χ R , p k H R ( 0 ) m , q c q 16 π d m 2 3 n q , S H λ F H 1 Δ k m , q 00 ( z ) χ E + χ R , p k H R ( 0 ) + m , q χ cascade ( m , q ) ( z )
c q = ( χ ¯ B F H 2 B q , S H d x d y ) 2 ( | B F H 4 | d x d y ) ( | B q , S H | 2 d x d y ) ,

Metrics