Abstract

We present a novel method to prepare optimized metal coatings for infrared Surface Plasmon Resonance (SPR) sensors by electroless plating. We show that Tilted Fiber Bragg grating sensors can be used to monitor in real-time the growth of gold nano-films up to 70 nm in thickness and to stop the deposition of the gold at a thickness that maximizes the SPR (near 55 nm for sensors operating in the near infrared at wavelengths around 1550 nm). The deposited films are highly uniform around the fiber circumference and in spite of some nanoscale roughness (RMS surface roughness of 5.17 nm) the underlying gratings show high quality SPR responses in water.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
    [CrossRef]
  2. K. S. Lee and T. Erdogan, “Fiber mode coupling in transmissive and reflective tilted fiber gratings,” Appl. Opt. 39(9), 1394–1404 (2000).
    [CrossRef] [PubMed]
  3. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometer,” Meas. Sci. Technol. 12(7), 765–770 (2001).
    [CrossRef]
  4. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]
  5. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [CrossRef] [PubMed]
  6. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [CrossRef] [PubMed]
  7. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  8. T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
    [CrossRef] [PubMed]
  9. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
    [CrossRef] [PubMed]
  10. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [CrossRef]
  11. J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
    [CrossRef] [PubMed]
  12. H. Raether, “Surface plasma oscillations as a tool for surface examinations,” Surf. Sci. 8(1-2), 233–246 (1967).
    [CrossRef]
  13. P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuators B Chem. 113(2), 774–781 (2006).
    [CrossRef]
  14. G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
    [CrossRef]
  15. R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
    [CrossRef]
  16. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
    [CrossRef]
  17. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31(14), 2118–2120 (2006).
    [CrossRef] [PubMed]
  18. Y.-J. He, Y.-L. Lo, and J.-F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” J. Opt. Soc. Am. B 23(5), 801–811 (2006).
    [CrossRef]
  19. S. Mani Tripathi, E. Marin, A. Kumar, and J.-P. Meunier, “Refractive index sensing characteristics of dual resonance long period gratings in bare and metal-coated D-shaped fibers,” Appl. Opt. 48(31), 53–58 (2009).
    [CrossRef]
  20. B. Špačková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
    [CrossRef] [PubMed]
  21. C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
    [CrossRef] [PubMed]
  22. V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt. 50(22), 4257–4261 (2011).
    [CrossRef] [PubMed]
  23. S. Roh, H. Kim, and B. Lee, “Infrared surface plasmon resonance in a subwavelength metallic grating under illumination at a large incidence angle,” J. Opt. Soc. Am. B 28(7), 1661–1667 (2011).
    [CrossRef]
  24. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
    [CrossRef]
  25. Y. Lo, Y. Lin, and Y. Chen, “Athermal fibre Bragg grating strain gauge with metal coating in measurement of thermal expansion coefficient,” Sens. Actuators A Phys. 117(1), 103–109 (2005).
    [CrossRef]
  26. Y. Feng, H. Zhang, Y.-L. Li, and C.-F. Rao, “Temperature sensing of metal-coated fiber bragg grating,” IEEE/ASME Trans. Mechatron. 15(4), 511–519 (2010).
    [CrossRef]
  27. S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, “New strategy for preparing thin gold films on modified glass surfaces by electroless deposition,” Langmuir 19(9), 3958–3965 (2003).
    [CrossRef]
  28. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
    [CrossRef] [PubMed]
  29. M. Perez, “Gibbs–Thomson effects in phase transformations,” Scr. Mater. 52(8), 709–712 (2005).
    [CrossRef]
  30. E. Fontana, “Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media,” Appl. Opt. 45(29), 7632–7642 (2006).
    [CrossRef] [PubMed]

2011 (3)

2010 (2)

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[CrossRef] [PubMed]

Y. Feng, H. Zhang, Y.-L. Li, and C.-F. Rao, “Temperature sensing of metal-coated fiber bragg grating,” IEEE/ASME Trans. Mechatron. 15(4), 511–519 (2010).
[CrossRef]

2009 (5)

S. Mani Tripathi, E. Marin, A. Kumar, and J.-P. Meunier, “Refractive index sensing characteristics of dual resonance long period gratings in bare and metal-coated D-shaped fibers,” Appl. Opt. 48(31), 53–58 (2009).
[CrossRef]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
[CrossRef] [PubMed]

B. Špačková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
[CrossRef] [PubMed]

2008 (3)

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
[CrossRef]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

2007 (2)

2006 (5)

2005 (2)

M. Perez, “Gibbs–Thomson effects in phase transformations,” Scr. Mater. 52(8), 709–712 (2005).
[CrossRef]

Y. Lo, Y. Lin, and Y. Chen, “Athermal fibre Bragg grating strain gauge with metal coating in measurement of thermal expansion coefficient,” Sens. Actuators A Phys. 117(1), 103–109 (2005).
[CrossRef]

2003 (1)

S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, “New strategy for preparing thin gold films on modified glass surfaces by electroless deposition,” Langmuir 19(9), 3958–3965 (2003).
[CrossRef]

2001 (2)

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometer,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

2000 (1)

1996 (1)

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[CrossRef]

1993 (1)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

1988 (1)

1967 (1)

H. Raether, “Surface plasma oscillations as a tool for surface examinations,” Surf. Sci. 8(1-2), 233–246 (1967).
[CrossRef]

Adam, P.

P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuators B Chem. 113(2), 774–781 (2006).
[CrossRef]

Albert, J.

Allsop, T.

Ballot, H.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Bennion, I.

Bensebaa, F.

S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, “New strategy for preparing thin gold films on modified glass surfaces by electroless deposition,” Langmuir 19(9), 3958–3965 (2003).
[CrossRef]

Brynda, E.

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

Caucheteur, C.

Chan, C. F.

Chen, C.

Chen, Y.

Y. Lo, Y. Lin, and Y. Chen, “Athermal fibre Bragg grating strain gauge with metal coating in measurement of thermal expansion coefficient,” Sens. Actuators A Phys. 117(1), 103–109 (2005).
[CrossRef]

Ctyroký, J.

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

Dakka, M. A.

Delport, F.

J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Dostalek, J.

P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuators B Chem. 113(2), 774–781 (2006).
[CrossRef]

Enright, G.

S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, “New strategy for preparing thin gold films on modified glass surfaces by electroless deposition,” Langmuir 19(9), 3958–3965 (2003).
[CrossRef]

Erdogan, T.

Feng, Y.

Y. Feng, H. Zhang, Y.-L. Li, and C.-F. Rao, “Temperature sensing of metal-coated fiber bragg grating,” IEEE/ASME Trans. Mechatron. 15(4), 511–519 (2010).
[CrossRef]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometer,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Fontana, E.

Guo, T.

He, Y.-J.

Hewlett, S. J.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[CrossRef]

Homola, J.

B. Špačková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuators B Chem. 113(2), 774–781 (2006).
[CrossRef]

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

Hrapovic, S.

S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, “New strategy for preparing thin gold films on modified glass surfaces by electroless deposition,” Langmuir 19(9), 3958–3965 (2003).
[CrossRef]

Huang, J.-F.

Jafari, A.

Jans, K.

J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Janssen, K. P.

J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Jorgenson, R.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Ju, J. J.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Kashyap, R.

Kawata, S.

Kim, H.

Kim, J. T.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Kim, J.-E.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Kim, M.-S.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Kimling, J.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Kotaidis, V.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Krug, P. A.

Kumar, A.

S. Mani Tripathi, E. Marin, A. Kumar, and J.-P. Meunier, “Refractive index sensing characteristics of dual resonance long period gratings in bare and metal-coated D-shaped fibers,” Appl. Opt. 48(31), 53–58 (2009).
[CrossRef]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometer,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Lammertyn, J.

J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Laronche, A.

Lee, B.

S. Roh, H. Kim, and B. Lee, “Infrared surface plasmon resonance in a subwavelength metallic grating under illumination at a large incidence angle,” J. Opt. Soc. Am. B 28(7), 1661–1667 (2011).
[CrossRef]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Lee, K. S.

Lee, W.-J.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Li, Y.-L.

Y. Feng, H. Zhang, Y.-L. Li, and C.-F. Rao, “Temperature sensing of metal-coated fiber bragg grating,” IEEE/ASME Trans. Mechatron. 15(4), 511–519 (2010).
[CrossRef]

Lin, Y.

Y. Lo, Y. Lin, and Y. Chen, “Athermal fibre Bragg grating strain gauge with metal coating in measurement of thermal expansion coefficient,” Sens. Actuators A Phys. 117(1), 103–109 (2005).
[CrossRef]

Liu, Y.

S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, “New strategy for preparing thin gold films on modified glass surfaces by electroless deposition,” Langmuir 19(9), 3958–3965 (2003).
[CrossRef]

Lo, Y.

Y. Lo, Y. Lin, and Y. Chen, “Athermal fibre Bragg grating strain gauge with metal coating in measurement of thermal expansion coefficient,” Sens. Actuators A Phys. 117(1), 103–109 (2005).
[CrossRef]

Lo, Y.-L.

Love, J. D.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[CrossRef]

Luong, J. H. T.

S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, “New strategy for preparing thin gold films on modified glass surfaces by electroless deposition,” Langmuir 19(9), 3958–3965 (2003).
[CrossRef]

Maes, G.

J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Maier, M.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Mani Tripathi, S.

S. Mani Tripathi, E. Marin, A. Kumar, and J.-P. Meunier, “Refractive index sensing characteristics of dual resonance long period gratings in bare and metal-coated D-shaped fibers,” Appl. Opt. 48(31), 53–58 (2009).
[CrossRef]

Mapps, D.

Marin, E.

S. Mani Tripathi, E. Marin, A. Kumar, and J.-P. Meunier, “Refractive index sensing characteristics of dual resonance long period gratings in bare and metal-coated D-shaped fibers,” Appl. Opt. 48(31), 53–58 (2009).
[CrossRef]

Matsubara, K.

Mégret, P.

Meltz, G.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[CrossRef]

Meunier, J.-P.

S. Mani Tripathi, E. Marin, A. Kumar, and J.-P. Meunier, “Refractive index sensing characteristics of dual resonance long period gratings in bare and metal-coated D-shaped fibers,” Appl. Opt. 48(31), 53–58 (2009).
[CrossRef]

Minami, S.

Neal, R.

Nemova, G.

Okenve, B.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Park, H. Y.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Park, S.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Perez, M.

M. Perez, “Gibbs–Thomson effects in phase transformations,” Scr. Mater. 52(8), 709–712 (2005).
[CrossRef]

Pfeiffer, H.

J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Plech, A.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Pollet, J.

J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Raether, H.

H. Raether, “Surface plasma oscillations as a tool for surface examinations,” Surf. Sci. 8(1-2), 233–246 (1967).
[CrossRef]

Rao, C.-F.

Y. Feng, H. Zhang, Y.-L. Li, and C.-F. Rao, “Temperature sensing of metal-coated fiber bragg grating,” IEEE/ASME Trans. Mechatron. 15(4), 511–519 (2010).
[CrossRef]

Rehman, S.

Roh, S.

S. Roh, H. Kim, and B. Lee, “Infrared surface plasmon resonance in a subwavelength metallic grating under illumination at a large incidence angle,” J. Opt. Soc. Am. B 28(7), 1661–1667 (2011).
[CrossRef]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Shao, L. Y.

Shevchenko, Y.

Shevchenko, Y. Y.

Slavík, R.

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

Špacková, B.

Tam, H. Y.

Thomson, D. J.

Voisin, V.

Webb, D. J.

Wevers, M.

J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Wuilpart, M.

Yee, S.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Zhang, H.

Y. Feng, H. Zhang, Y.-L. Li, and C.-F. Rao, “Temperature sensing of metal-coated fiber bragg grating,” IEEE/ASME Trans. Mechatron. 15(4), 511–519 (2010).
[CrossRef]

Appl. Opt. (6)

Biosens. Bioelectron. (1)

J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

IEEE/ASME Trans. Mechatron. (1)

Y. Feng, H. Zhang, Y.-L. Li, and C.-F. Rao, “Temperature sensing of metal-coated fiber bragg grating,” IEEE/ASME Trans. Mechatron. 15(4), 511–519 (2010).
[CrossRef]

J. Appl. Phys. (1)

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (1)

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B 110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Langmuir (1)

S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, “New strategy for preparing thin gold films on modified glass surfaces by electroless deposition,” Langmuir 19(9), 3958–3965 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometer,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[CrossRef]

Scr. Mater. (1)

M. Perez, “Gibbs–Thomson effects in phase transformations,” Scr. Mater. 52(8), 709–712 (2005).
[CrossRef]

Sens. Actuators A Phys. (1)

Y. Lo, Y. Lin, and Y. Chen, “Athermal fibre Bragg grating strain gauge with metal coating in measurement of thermal expansion coefficient,” Sens. Actuators A Phys. 117(1), 103–109 (2005).
[CrossRef]

Sens. Actuators B Chem. (3)

R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuators B Chem. 113(2), 774–781 (2006).
[CrossRef]

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Surf. Sci. (1)

H. Raether, “Surface plasma oscillations as a tool for surface examinations,” Surf. Sci. 8(1-2), 233–246 (1967).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1528 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the optical experiment setup.

Fig. 2
Fig. 2

Density plot representation of the TFBG spectra acquired as a function of time, near the beginning of the deposition, with continuously rotating polarization angle. The orthogonal polarizations states Px and Py are identified by the red and blue lines and the corresponding spectra can be extracted easily (either in quasi real-time or in post-processing).

Fig. 3
Fig. 3

TFBG spectra for orthogonal polarization states Px and Py, taken after 5 minutes of gold film deposition.

Fig. 4
Fig. 4

Evolution of a pair of orthogonally polarized resonances at 1545 nm: amplitude (a) and wavelength (b).

Fig. 5
Fig. 5

AFM image (taken after 27 min of deposition) (left), and trace scan (right) showing the thickness variation on the boundary of the scratched area.

Fig. 6
Fig. 6

(a) Time evolution of the average gold film thickness extracted from AFM measurements on individual samples. (b) Correlation between the film thickness and the optical response of the sensor acquired at the Py polarization state at 1545 nm wavelength.

Fig. 7
Fig. 7

SEM images of electroless gold plating of the fiber’s surface. (1) after 1 min of deposition (2) after 45 min of deposition, (c) image of the fiber’s circumference after 40 min of deposition.

Fig. 8
Fig. 8

(a) The envelope of PDL spectra, taken continuously along the course of gold film deposition, and cross sections centered at the point of the deepest notch: wavelength = 1542 nm (b) and time = 7 min (c). (Media 1) The time-lapse evolution of Fig. 8(b) during plating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P D L ( λ ) = | 10 L o g 10 ( T x ( λ ) T y ( λ ) ) |

Metrics