Abstract

By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole−1 and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
    [CrossRef]
  2. S. Kim, M. C. Kim, S. H. Choi, K. J. Kim, H. N. Hwang, and C. C. Hwang, “Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces,” Appl. Phys. Lett. 91(10), 103113 (2007).
    [CrossRef]
  3. C. H. Lin, S. C. Lee, and Y. F. Chen, “Strong room-temperature photoluminescence of hydrogenated amorphous-silicon oxide and its correlation to porous silicon,” Appl. Phys. Lett. 63(7), 902–904 (1993).
    [CrossRef]
  4. F. Baumann, B. Deubzer, M. Geck, J. Dauth, S. Sheiko, and M. Schmidt, “Soluble organosilicon micronetworks with spatially confined reaction sites,” Adv. Mater. 9(12), 955–958 (1997).
    [CrossRef]
  5. Q. Cheng, S. Xu, and K. Ostrikov, “Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas,” Acta Mater. 58(2), 560–569 (2010).
    [CrossRef]
  6. Q. Cheng, S. Xu, S. Huang, and K. Ostrikov, “Effective control of nanostructured phases in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas,” Cryst. Growth Des. 9(6), 2863–2867 (2009).
    [CrossRef]
  7. N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008).
    [CrossRef]
  8. W. C. Yoo and J. K. Lee, “Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes,” Adv. Mater. 16(13), 1097–1101 (2004).
    [CrossRef]
  9. R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
    [CrossRef]
  10. A. Johansson, E. Widenkvist, J. Lu, M. Boman, and U. Jansson, “Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template,” Nano Lett. 5(8), 1603–1606 (2005).
    [CrossRef] [PubMed]
  11. Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, and I. N. Lin, “Characteristics of ultra-nano-crystal line diamond films grown on the porous anodic alumina template,” Diamond Relat. Mater. 15(2–3), 324–328 (2006).
    [CrossRef]
  12. C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20(6), 428–430 (2008).
    [CrossRef]
  13. T. Sugino, C. Kimura, and T. Yamamoto, “Electron field emission from boron-nitride nanofilms,” Appl. Phys. Lett. 80(19), 3602–3604 (2002).
    [CrossRef]
  14. T. Sugino, S. Kawasaki, K. Tanioka, and J. Shirafuji, “Electron emission from boron nitride coated Si field emitters,” Appl. Phys. Lett. 71(18), 2704–2706 (1997).
    [CrossRef]
  15. G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
    [CrossRef]
  16. G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
    [CrossRef]
  17. X. Wu, X. Zhong, and K. Ostrikov, “Nanopore processing in dielectric materials and dielectric template assisted nanoarray synthesis: Using pulsed bias to enhance process throughput and precision,” Appl. Phys. Lett. 92(22), 223104 (2008).
    [CrossRef]
  18. K. Ostrikov and A. B. Murphy, “Plasma-aided nanofabrication: where is the cutting edge?” J. Phys. D Appl. Phys. 40(8), 2223–2241 (2007).
    [CrossRef]
  19. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter 48(15), 11024–11036 (1993).
    [CrossRef] [PubMed]
  20. C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
    [CrossRef]
  21. Seminar of American Society for Metals, “Diffusion,” Metals Parks, Ohio 1–23(1972).
  22. L. A. Nesbit, “Annealing characteristic of Si-rich SiO2-films,” Appl. Phys. Lett. 46(1), 38–40 (1985).
    [CrossRef]
  23. S. Wang, Fundamentals of Semiconductor Theory and Device Physics, (Prentice-Hall Inc., 1989) pp. 62–63.
  24. Y. H. Pai and G.-R. Lin, “In situ synthesis of scalable metallic nanodots in electron microscope,” J. Electrochem. Soc. 157(2), E13–E18 (2010).
    [CrossRef]
  25. A. N. Goldstein, “The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors,” Appl. Phys. A: Mater. Sci. Process. 62(1), 33–37 (1996).
    [CrossRef]
  26. A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals,” Science 256(5062), 1425–1427 (1992).
    [CrossRef] [PubMed]
  27. A. N. Goldstein, “The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors,” Appl. Phys. A: Mater. Sci. Process. 62(1), 33–37 (1996).
    [CrossRef]

2010

Q. Cheng, S. Xu, and K. Ostrikov, “Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas,” Acta Mater. 58(2), 560–569 (2010).
[CrossRef]

Y. H. Pai and G.-R. Lin, “In situ synthesis of scalable metallic nanodots in electron microscope,” J. Electrochem. Soc. 157(2), E13–E18 (2010).
[CrossRef]

2009

Q. Cheng, S. Xu, S. Huang, and K. Ostrikov, “Effective control of nanostructured phases in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas,” Cryst. Growth Des. 9(6), 2863–2867 (2009).
[CrossRef]

2008

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008).
[CrossRef]

C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20(6), 428–430 (2008).
[CrossRef]

G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[CrossRef]

X. Wu, X. Zhong, and K. Ostrikov, “Nanopore processing in dielectric materials and dielectric template assisted nanoarray synthesis: Using pulsed bias to enhance process throughput and precision,” Appl. Phys. Lett. 92(22), 223104 (2008).
[CrossRef]

2007

K. Ostrikov and A. B. Murphy, “Plasma-aided nanofabrication: where is the cutting edge?” J. Phys. D Appl. Phys. 40(8), 2223–2241 (2007).
[CrossRef]

G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

S. Kim, M. C. Kim, S. H. Choi, K. J. Kim, H. N. Hwang, and C. C. Hwang, “Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces,” Appl. Phys. Lett. 91(10), 103113 (2007).
[CrossRef]

2006

R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
[CrossRef]

Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, and I. N. Lin, “Characteristics of ultra-nano-crystal line diamond films grown on the porous anodic alumina template,” Diamond Relat. Mater. 15(2–3), 324–328 (2006).
[CrossRef]

2005

A. Johansson, E. Widenkvist, J. Lu, M. Boman, and U. Jansson, “Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template,” Nano Lett. 5(8), 1603–1606 (2005).
[CrossRef] [PubMed]

2004

W. C. Yoo and J. K. Lee, “Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes,” Adv. Mater. 16(13), 1097–1101 (2004).
[CrossRef]

2003

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
[CrossRef]

2002

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

T. Sugino, C. Kimura, and T. Yamamoto, “Electron field emission from boron-nitride nanofilms,” Appl. Phys. Lett. 80(19), 3602–3604 (2002).
[CrossRef]

1997

T. Sugino, S. Kawasaki, K. Tanioka, and J. Shirafuji, “Electron emission from boron nitride coated Si field emitters,” Appl. Phys. Lett. 71(18), 2704–2706 (1997).
[CrossRef]

F. Baumann, B. Deubzer, M. Geck, J. Dauth, S. Sheiko, and M. Schmidt, “Soluble organosilicon micronetworks with spatially confined reaction sites,” Adv. Mater. 9(12), 955–958 (1997).
[CrossRef]

1996

A. N. Goldstein, “The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors,” Appl. Phys. A: Mater. Sci. Process. 62(1), 33–37 (1996).
[CrossRef]

A. N. Goldstein, “The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors,” Appl. Phys. A: Mater. Sci. Process. 62(1), 33–37 (1996).
[CrossRef]

1993

C. H. Lin, S. C. Lee, and Y. F. Chen, “Strong room-temperature photoluminescence of hydrogenated amorphous-silicon oxide and its correlation to porous silicon,” Appl. Phys. Lett. 63(7), 902–904 (1993).
[CrossRef]

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter 48(15), 11024–11036 (1993).
[CrossRef] [PubMed]

1992

A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals,” Science 256(5062), 1425–1427 (1992).
[CrossRef] [PubMed]

1985

L. A. Nesbit, “Annealing characteristic of Si-rich SiO2-films,” Appl. Phys. Lett. 46(1), 38–40 (1985).
[CrossRef]

Alivisatos, A. P.

A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals,” Science 256(5062), 1425–1427 (1992).
[CrossRef] [PubMed]

Allan, G.

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter 48(15), 11024–11036 (1993).
[CrossRef] [PubMed]

Baumann, F.

F. Baumann, B. Deubzer, M. Geck, J. Dauth, S. Sheiko, and M. Schmidt, “Soluble organosilicon micronetworks with spatially confined reaction sites,” Adv. Mater. 9(12), 955–958 (1997).
[CrossRef]

Boman, M.

R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
[CrossRef]

A. Johansson, E. Widenkvist, J. Lu, M. Boman, and U. Jansson, “Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template,” Nano Lett. 5(8), 1603–1606 (2005).
[CrossRef] [PubMed]

Bonafos, C.

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

Carrada, M.

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

Cazzanelli, M.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
[CrossRef]

Chen, C. Y.

Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, and I. N. Lin, “Characteristics of ultra-nano-crystal line diamond films grown on the porous anodic alumina template,” Diamond Relat. Mater. 15(2–3), 324–328 (2006).
[CrossRef]

Chen, Y. C.

Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, and I. N. Lin, “Characteristics of ultra-nano-crystal line diamond films grown on the porous anodic alumina template,” Diamond Relat. Mater. 15(2–3), 324–328 (2006).
[CrossRef]

Chen, Y. F.

C. H. Lin, S. C. Lee, and Y. F. Chen, “Strong room-temperature photoluminescence of hydrogenated amorphous-silicon oxide and its correlation to porous silicon,” Appl. Phys. Lett. 63(7), 902–904 (1993).
[CrossRef]

Cheng, Q.

Q. Cheng, S. Xu, and K. Ostrikov, “Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas,” Acta Mater. 58(2), 560–569 (2010).
[CrossRef]

Q. Cheng, S. Xu, S. Huang, and K. Ostrikov, “Effective control of nanostructured phases in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas,” Cryst. Growth Des. 9(6), 2863–2867 (2009).
[CrossRef]

Choi, S. H.

S. Kim, M. C. Kim, S. H. Choi, K. J. Kim, H. N. Hwang, and C. C. Hwang, “Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces,” Appl. Phys. Lett. 91(10), 103113 (2007).
[CrossRef]

Chuang, T. H.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008).
[CrossRef]

Claverie, A.

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

Dauth, J.

F. Baumann, B. Deubzer, M. Geck, J. Dauth, S. Sheiko, and M. Schmidt, “Soluble organosilicon micronetworks with spatially confined reaction sites,” Adv. Mater. 9(12), 955–958 (1997).
[CrossRef]

Delerue, C.

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter 48(15), 11024–11036 (1993).
[CrossRef] [PubMed]

Deubzer, B.

F. Baumann, B. Deubzer, M. Geck, J. Dauth, S. Sheiko, and M. Schmidt, “Soluble organosilicon micronetworks with spatially confined reaction sites,” Adv. Mater. 9(12), 955–958 (1997).
[CrossRef]

Echer, C. M.

A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals,” Science 256(5062), 1425–1427 (1992).
[CrossRef] [PubMed]

Ferre, R.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
[CrossRef]

Garcia, C.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
[CrossRef]

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

Garrido, B.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
[CrossRef]

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

Geck, M.

F. Baumann, B. Deubzer, M. Geck, J. Dauth, S. Sheiko, and M. Schmidt, “Soluble organosilicon micronetworks with spatially confined reaction sites,” Adv. Mater. 9(12), 955–958 (1997).
[CrossRef]

Goldstein, A. N.

A. N. Goldstein, “The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors,” Appl. Phys. A: Mater. Sci. Process. 62(1), 33–37 (1996).
[CrossRef]

A. N. Goldstein, “The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors,” Appl. Phys. A: Mater. Sci. Process. 62(1), 33–37 (1996).
[CrossRef]

A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals,” Science 256(5062), 1425–1427 (1992).
[CrossRef] [PubMed]

Hjort, K.

R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
[CrossRef]

Houng, M. P.

C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20(6), 428–430 (2008).
[CrossRef]

Hsu, C. F.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008).
[CrossRef]

Huang, S.

Q. Cheng, S. Xu, S. Huang, and K. Ostrikov, “Effective control of nanostructured phases in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas,” Cryst. Growth Des. 9(6), 2863–2867 (2009).
[CrossRef]

Hwang, C. C.

S. Kim, M. C. Kim, S. H. Choi, K. J. Kim, H. N. Hwang, and C. C. Hwang, “Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces,” Appl. Phys. Lett. 91(10), 103113 (2007).
[CrossRef]

Hwang, H. N.

S. Kim, M. C. Kim, S. H. Choi, K. J. Kim, H. N. Hwang, and C. C. Hwang, “Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces,” Appl. Phys. Lett. 91(10), 103113 (2007).
[CrossRef]

Jansson, U.

A. Johansson, E. Widenkvist, J. Lu, M. Boman, and U. Jansson, “Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template,” Nano Lett. 5(8), 1603–1606 (2005).
[CrossRef] [PubMed]

Jenq, F. L.

C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20(6), 428–430 (2008).
[CrossRef]

Jensen, J.

R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
[CrossRef]

Johansson, A.

R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
[CrossRef]

A. Johansson, E. Widenkvist, J. Lu, M. Boman, and U. Jansson, “Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template,” Nano Lett. 5(8), 1603–1606 (2005).
[CrossRef] [PubMed]

Kawasaki, S.

T. Sugino, S. Kawasaki, K. Tanioka, and J. Shirafuji, “Electron emission from boron nitride coated Si field emitters,” Appl. Phys. Lett. 71(18), 2704–2706 (1997).
[CrossRef]

Kim, K. J.

S. Kim, M. C. Kim, S. H. Choi, K. J. Kim, H. N. Hwang, and C. C. Hwang, “Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces,” Appl. Phys. Lett. 91(10), 103113 (2007).
[CrossRef]

Kim, M. C.

S. Kim, M. C. Kim, S. H. Choi, K. J. Kim, H. N. Hwang, and C. C. Hwang, “Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces,” Appl. Phys. Lett. 91(10), 103113 (2007).
[CrossRef]

Kim, S.

S. Kim, M. C. Kim, S. H. Choi, K. J. Kim, H. N. Hwang, and C. C. Hwang, “Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces,” Appl. Phys. Lett. 91(10), 103113 (2007).
[CrossRef]

Kimura, C.

T. Sugino, C. Kimura, and T. Yamamoto, “Electron field emission from boron-nitride nanofilms,” Appl. Phys. Lett. 80(19), 3602–3604 (2002).
[CrossRef]

Kuo, H. C.

G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

Lai, M. Y.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008).
[CrossRef]

Lannoo, M.

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter 48(15), 11024–11036 (1993).
[CrossRef] [PubMed]

Lee, J. K.

W. C. Yoo and J. K. Lee, “Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes,” Adv. Mater. 16(13), 1097–1101 (2004).
[CrossRef]

Lee, S. C.

C. H. Lin, S. C. Lee, and Y. F. Chen, “Strong room-temperature photoluminescence of hydrogenated amorphous-silicon oxide and its correlation to porous silicon,” Appl. Phys. Lett. 63(7), 902–904 (1993).
[CrossRef]

Lee, Y. C.

Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, and I. N. Lin, “Characteristics of ultra-nano-crystal line diamond films grown on the porous anodic alumina template,” Diamond Relat. Mater. 15(2–3), 324–328 (2006).
[CrossRef]

Lin, C. H.

C. H. Lin, S. C. Lee, and Y. F. Chen, “Strong room-temperature photoluminescence of hydrogenated amorphous-silicon oxide and its correlation to porous silicon,” Appl. Phys. Lett. 63(7), 902–904 (1993).
[CrossRef]

Lin, C. J.

G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

Lin, C. T.

Lin, G.-R.

Y. H. Pai and G.-R. Lin, “In situ synthesis of scalable metallic nanodots in electron microscope,” J. Electrochem. Soc. 157(2), E13–E18 (2010).
[CrossRef]

G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[CrossRef]

G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

Lin, I. N.

Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, and I. N. Lin, “Characteristics of ultra-nano-crystal line diamond films grown on the porous anodic alumina template,” Diamond Relat. Mater. 15(2–3), 324–328 (2006).
[CrossRef]

Lin, S. J.

Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, and I. N. Lin, “Characteristics of ultra-nano-crystal line diamond films grown on the porous anodic alumina template,” Diamond Relat. Mater. 15(2–3), 324–328 (2006).
[CrossRef]

Liu, C. C.

C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20(6), 428–430 (2008).
[CrossRef]

Liu, C. Y.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008).
[CrossRef]

Liu, N. W.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008).
[CrossRef]

Lopez, M.

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

Lu, H. C.

C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20(6), 428–430 (2008).
[CrossRef]

Lu, J.

A. Johansson, E. Widenkvist, J. Lu, M. Boman, and U. Jansson, “Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template,” Nano Lett. 5(8), 1603–1606 (2005).
[CrossRef] [PubMed]

Morante, J. R.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
[CrossRef]

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

Moreno, J. A.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
[CrossRef]

Murphy, A. B.

K. Ostrikov and A. B. Murphy, “Plasma-aided nanofabrication: where is the cutting edge?” J. Phys. D Appl. Phys. 40(8), 2223–2241 (2007).
[CrossRef]

Nesbit, L. A.

L. A. Nesbit, “Annealing characteristic of Si-rich SiO2-films,” Appl. Phys. Lett. 46(1), 38–40 (1985).
[CrossRef]

Ostrikov, K.

Q. Cheng, S. Xu, and K. Ostrikov, “Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas,” Acta Mater. 58(2), 560–569 (2010).
[CrossRef]

Q. Cheng, S. Xu, S. Huang, and K. Ostrikov, “Effective control of nanostructured phases in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas,” Cryst. Growth Des. 9(6), 2863–2867 (2009).
[CrossRef]

X. Wu, X. Zhong, and K. Ostrikov, “Nanopore processing in dielectric materials and dielectric template assisted nanoarray synthesis: Using pulsed bias to enhance process throughput and precision,” Appl. Phys. Lett. 92(22), 223104 (2008).
[CrossRef]

K. Ostrikov and A. B. Murphy, “Plasma-aided nanofabrication: where is the cutting edge?” J. Phys. D Appl. Phys. 40(8), 2223–2241 (2007).
[CrossRef]

Pai, Y. H.

Y. H. Pai and G.-R. Lin, “In situ synthesis of scalable metallic nanodots in electron microscope,” J. Electrochem. Soc. 157(2), E13–E18 (2010).
[CrossRef]

G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[CrossRef]

Pavesi, L.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
[CrossRef]

Pellegrino, P.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
[CrossRef]

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

Perez-Rodriguez, A.

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

Possnert, G.

R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
[CrossRef]

Sanz, R.

R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
[CrossRef]

Schmidt, M.

F. Baumann, B. Deubzer, M. Geck, J. Dauth, S. Sheiko, and M. Schmidt, “Soluble organosilicon micronetworks with spatially confined reaction sites,” Adv. Mater. 9(12), 955–958 (1997).
[CrossRef]

Sheiko, S.

F. Baumann, B. Deubzer, M. Geck, J. Dauth, S. Sheiko, and M. Schmidt, “Soluble organosilicon micronetworks with spatially confined reaction sites,” Adv. Mater. 9(12), 955–958 (1997).
[CrossRef]

Shirafuji, J.

T. Sugino, S. Kawasaki, K. Tanioka, and J. Shirafuji, “Electron emission from boron nitride coated Si field emitters,” Appl. Phys. Lett. 71(18), 2704–2706 (1997).
[CrossRef]

Skupinski, M.

R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
[CrossRef]

Sugino, T.

T. Sugino, C. Kimura, and T. Yamamoto, “Electron field emission from boron-nitride nanofilms,” Appl. Phys. Lett. 80(19), 3602–3604 (2002).
[CrossRef]

T. Sugino, S. Kawasaki, K. Tanioka, and J. Shirafuji, “Electron emission from boron nitride coated Si field emitters,” Appl. Phys. Lett. 71(18), 2704–2706 (1997).
[CrossRef]

Tai, N. H.

Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, and I. N. Lin, “Characteristics of ultra-nano-crystal line diamond films grown on the porous anodic alumina template,” Diamond Relat. Mater. 15(2–3), 324–328 (2006).
[CrossRef]

Tanioka, K.

T. Sugino, S. Kawasaki, K. Tanioka, and J. Shirafuji, “Electron emission from boron nitride coated Si field emitters,” Appl. Phys. Lett. 71(18), 2704–2706 (1997).
[CrossRef]

Vazquez, M.

R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
[CrossRef]

Wang, C. C.

C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20(6), 428–430 (2008).
[CrossRef]

Wang, H. H.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008).
[CrossRef]

Wang, Y. H.

C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20(6), 428–430 (2008).
[CrossRef]

Wang, Y. L.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008).
[CrossRef]

Widenkvist, E.

A. Johansson, E. Widenkvist, J. Lu, M. Boman, and U. Jansson, “Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template,” Nano Lett. 5(8), 1603–1606 (2005).
[CrossRef] [PubMed]

Wu, X.

X. Wu, X. Zhong, and K. Ostrikov, “Nanopore processing in dielectric materials and dielectric template assisted nanoarray synthesis: Using pulsed bias to enhance process throughput and precision,” Appl. Phys. Lett. 92(22), 223104 (2008).
[CrossRef]

Xu, S.

Q. Cheng, S. Xu, and K. Ostrikov, “Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas,” Acta Mater. 58(2), 560–569 (2010).
[CrossRef]

Q. Cheng, S. Xu, S. Huang, and K. Ostrikov, “Effective control of nanostructured phases in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas,” Cryst. Growth Des. 9(6), 2863–2867 (2009).
[CrossRef]

Yamamoto, T.

T. Sugino, C. Kimura, and T. Yamamoto, “Electron field emission from boron-nitride nanofilms,” Appl. Phys. Lett. 80(19), 3602–3604 (2002).
[CrossRef]

Yoo, W. C.

W. C. Yoo and J. K. Lee, “Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes,” Adv. Mater. 16(13), 1097–1101 (2004).
[CrossRef]

Zhong, X.

X. Wu, X. Zhong, and K. Ostrikov, “Nanopore processing in dielectric materials and dielectric template assisted nanoarray synthesis: Using pulsed bias to enhance process throughput and precision,” Appl. Phys. Lett. 92(22), 223104 (2008).
[CrossRef]

Acta Mater.

Q. Cheng, S. Xu, and K. Ostrikov, “Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas,” Acta Mater. 58(2), 560–569 (2010).
[CrossRef]

Adv. Mater.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008).
[CrossRef]

W. C. Yoo and J. K. Lee, “Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes,” Adv. Mater. 16(13), 1097–1101 (2004).
[CrossRef]

F. Baumann, B. Deubzer, M. Geck, J. Dauth, S. Sheiko, and M. Schmidt, “Soluble organosilicon micronetworks with spatially confined reaction sites,” Adv. Mater. 9(12), 955–958 (1997).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process.

A. N. Goldstein, “The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors,” Appl. Phys. A: Mater. Sci. Process. 62(1), 33–37 (1996).
[CrossRef]

A. N. Goldstein, “The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors,” Appl. Phys. A: Mater. Sci. Process. 62(1), 33–37 (1996).
[CrossRef]

Appl. Phys. Lett.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003).
[CrossRef]

L. A. Nesbit, “Annealing characteristic of Si-rich SiO2-films,” Appl. Phys. Lett. 46(1), 38–40 (1985).
[CrossRef]

M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002).
[CrossRef]

S. Kim, M. C. Kim, S. H. Choi, K. J. Kim, H. N. Hwang, and C. C. Hwang, “Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces,” Appl. Phys. Lett. 91(10), 103113 (2007).
[CrossRef]

C. H. Lin, S. C. Lee, and Y. F. Chen, “Strong room-temperature photoluminescence of hydrogenated amorphous-silicon oxide and its correlation to porous silicon,” Appl. Phys. Lett. 63(7), 902–904 (1993).
[CrossRef]

T. Sugino, C. Kimura, and T. Yamamoto, “Electron field emission from boron-nitride nanofilms,” Appl. Phys. Lett. 80(19), 3602–3604 (2002).
[CrossRef]

T. Sugino, S. Kawasaki, K. Tanioka, and J. Shirafuji, “Electron emission from boron nitride coated Si field emitters,” Appl. Phys. Lett. 71(18), 2704–2706 (1997).
[CrossRef]

G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

X. Wu, X. Zhong, and K. Ostrikov, “Nanopore processing in dielectric materials and dielectric template assisted nanoarray synthesis: Using pulsed bias to enhance process throughput and precision,” Appl. Phys. Lett. 92(22), 223104 (2008).
[CrossRef]

Cryst. Growth Des.

Q. Cheng, S. Xu, S. Huang, and K. Ostrikov, “Effective control of nanostructured phases in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas,” Cryst. Growth Des. 9(6), 2863–2867 (2009).
[CrossRef]

Diamond Relat. Mater.

Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, and I. N. Lin, “Characteristics of ultra-nano-crystal line diamond films grown on the porous anodic alumina template,” Diamond Relat. Mater. 15(2–3), 324–328 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20(6), 428–430 (2008).
[CrossRef]

J. Electrochem. Soc.

Y. H. Pai and G.-R. Lin, “In situ synthesis of scalable metallic nanodots in electron microscope,” J. Electrochem. Soc. 157(2), E13–E18 (2010).
[CrossRef]

J. Lightwave Technol.

J. Phys. D Appl. Phys.

K. Ostrikov and A. B. Murphy, “Plasma-aided nanofabrication: where is the cutting edge?” J. Phys. D Appl. Phys. 40(8), 2223–2241 (2007).
[CrossRef]

Nano Lett.

R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006).
[CrossRef]

A. Johansson, E. Widenkvist, J. Lu, M. Boman, and U. Jansson, “Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template,” Nano Lett. 5(8), 1603–1606 (2005).
[CrossRef] [PubMed]

Phys. Rev. B Condens. Matter

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter 48(15), 11024–11036 (1993).
[CrossRef] [PubMed]

Science

A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals,” Science 256(5062), 1425–1427 (1992).
[CrossRef] [PubMed]

Other

S. Wang, Fundamentals of Semiconductor Theory and Device Physics, (Prentice-Hall Inc., 1989) pp. 62–63.

Seminar of American Society for Metals, “Diffusion,” Metals Parks, Ohio 1–23(1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The cross-sectional electron micrograph of 1D Si-rich SiOx nano-rod buried nano-porous AAO membrane.

Fig. 2
Fig. 2

(a) PL spectra and (b) normalized PL intensity of Si-QD embedded 2D SiOx thin-film and 1D SiOx nano-rod at optimized annealing condition. (Figs. 2(a) and 2(b) inset: as-grown PL spectra and O/Si composition ratio of Si-rich SiOx host matrix, respectively.)

Fig. 3
Fig. 3

A model of Si-QD aggregation according to which spatially confined synthesis of Si-QD embedded in 1D SiOx nano-rod.

Fig. 4
Fig. 4

TEM micrograph of Si-QD embedded in (a) 1D SiOx nano-rod and (b) 2D thin-film, respectively; (c) and (d) the statistical analysis on size distribution of Si-QD obtained from the cross-sectional HRTEM micrographs, respectively. (Figs. 4(c) and 4(d) inset: HRTEM micrograph of Si-QD embedded 1D SiOx nano-rod and SiOx thin film, respectively.)

Fig. 5
Fig. 5

(a) and (b) the PL patterns of Si-QDs buried in 1D SiOx nano-rod and 2D SiOx thin-film; (c) and (d) the PL patterns of the nano-porous AAO template and the Si substrate at the same exposure time of 1/60 second.

Fig. 6
Fig. 6

The wavelength and linewidth of PL spectra as a function of annealing temperature (Inset: Normalized PL intensity of Si-QD embedded SiOx nano-rod in nano-porous AAO membrane).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J Si = D 0 , S i [ C S i / r ] + < ν S i > F C S i
λ = 1240 / [ 1.12 + 3.37 / ( 2 C 4 D 0 e Q / K T t ) 1.39 ]

Metrics