Abstract

We propose and demonstrate an electrooptic technique for relaying microwave signals over an optical fiber and downconverting the microwave signal to an intermediate frequency at the receiver. The system uses electrooptic phase modulation in the transmitter to impose the microwave signal on an optical carrier followed by re-modulation with a microwave local oscillator at the receiver. We demonstrate that by subsequently suppressing the optical carrier using a notch filter, the resulting optical signal can be directly detected to obtain a downconverted microwave signal. We further show that by simply controlling the amplitude of the microwave local oscillator, the system can be linearized to third-order, yielding an improvement in the dynamic range.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
    [CrossRef]
  2. A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
    [CrossRef]
  3. L. M. Johnson and H. V. Roussell, "Reduction of intermodulation distortion in interferometric optical modulators," Opt. Lett. 13, 928-930 (1988).
    [CrossRef] [PubMed]
  4. S. K. Korotky and R. M. de Ridder, "Dual Parallel Modulation Schemes for Low-Distortion Analog Optical Transmission," IEEE J. Sel. Areas Comm. 8, 1377-1381 (1990).
    [CrossRef]
  5. M. L. Farwell, Z.-Q. Lin, E. Wooten, and W. S. C. Chang, "An Electrooptic Intensity Modulator with Improved Linearity," IEEE Photon. Technol. Lett. 3, 792-795 (1991).
    [CrossRef]
  6. M. Nazarathy, J. Berger, A. J. Ley, I. M. Levi, and Y. Kagan, "Progress in Externally Modulated AM CATV Transmission Systems," J. Lightwave Technol. 11, 82-105 (1993).
    [CrossRef]
  7. W. B. Bridges and J. H. Schaffner, "Distortion in Linearized Electrooptic Modulators," IEEE Trans. Microw. Theory Tech. 43, 2184-2197 (1995).
    [CrossRef]
  8. G. E. Betts and F. J. O’Donnell, "Microwave Analog Optical Links Using Suboctave Linearized Modulators," IEEE Photon. Technol. Lett. 8, 1273-1275 (1996).
    [CrossRef]
  9. Y. Chiu, B. Jalali, S. Garner, and W. Steier, "Broad-Band Electronic Linearizer for Externally Modulated Analog Fiber-Optic Links," IEEE Photon. Technol. Lett. 11, 48-50 (1999).
    [CrossRef]
  10. E. I. Ackerman, "Broad-Band Linearization of a Mach-Zehnder Electrooptic Modulator," IEEE Trans. Microw. Theory Tech. 47, 2271-2279 (1999).
    [CrossRef]
  11. B. M. Haas and T. E. Murphy, "A Simple, Linearized, Phase-Modulated Analog Optical Transmission System," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
    [CrossRef]
  12. B. Masella, B. Hraimel, and X. Zhang, "Enhanced Spurious-Free Dynamic Range Using Mixed Polarization in Optical Single Sideband Mach-Zehnder Modulator," J. Lightwave Technol. 27, 3034-3041 (2009).
    [CrossRef]
  13. T. S. Tan, R. L. Jungerman, and S. S. Elliott, "Optical Receiver and Modulator Frequency Response Measurement with a Nd:YAG Ring Laser Heterodyne Technique," IEEE Trans. Microw. Theory Tech. 37, 1217-1222 (1989).
    [CrossRef]
  14. A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, "Wide-Band Electrooptic Intensity Modulator Frequency Response Measurement Using an Optical Heterodyne Down-Conversion Technique," IEEE Trans. Microw. Theory Tech. 54, 240-246 (2006).
    [CrossRef]
  15. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave-Optical Mixing in LiNbO3 Modulators," IEEE Trans. Microw. Theory Tech. 41, 2383-2391 (1993).
    [CrossRef]
  16. A. C. Lindsay, G. A. Knight, and S. T. Winnall, "Photonic Mixers for Wide Bandwidth RF Receiver Applications," IEEE Trans. Microw. Theory Tech. 43, 2311-2317 (1995).
    [CrossRef]
  17. C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, "A Photonic-Link Millimeter Wave Mixer Using Cascaded Optical Modulators and Harmonic Carrier Generation," IEEE Photon. Technol. Lett. 8, 1166-1168 (1996).
    [CrossRef]
  18. R. Helkey, J. C. Twichell, and C. CoxIII, "A Down-Conversion Optical Link with RF Gain," J. Lightwave Technol. 15, 956-961 (1997).
    [CrossRef]
  19. K.-I. Kitayama and R. A. Griffin, "Optical Downconversion from Millimeter-Wave to IF-Band Over 50-km-Long Optical Fiber Link Using an Electroabsorption Modulator," IEEE Photon. Technol. Lett. 11, 287-289 (1999).
    [CrossRef]
  20. F. Zeng and J. Yao, "All-Optical Microwave Mixing and Bandpass Filtering in a Radio-Over-Fiber Link," IEEE Photon. Technol. Lett. 17, 899-901 (2005).
    [CrossRef]
  21. Y. Le Guennec, G. Maury, J. Yao, and B. Cabon, "New Optical Microwave Up-Conversion Solution in Radio-Over-Fiber Networks for 60-GHz Wireless Applications," J. Lightwave Technol. 24, 1277-1282 (2006).
    [CrossRef]
  22. Y. Li, D. Yoo, P. Herczfeld, A. Rosen, A. Madjar, and S. Goldwasser, "Receiver for coherent fiber-optic link with high dynamic range and low noise figure," in "Proceedings of Topical Meeting on Microwave Photonics," (2005).
  23. V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, "Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation With Direct Detection for Analog-Photonic Links," IEEE Trans. Microw. Theory Tech. 55, 1978-1985 (2007).
    [CrossRef]
  24. A. Ramaswamy, L. A. Johansson, J. Klamkin, H.-F. Chou, C. Sheldon, M. J. Rodwell, L. A. Coldren, and J. E. Bowers, "Integrated Coherent Receivers for High-Linearity Microwave Photonic Links," J. Lightwave Technol. 26, 209-216 (2008).
    [CrossRef]
  25. T. R. Clark and M. L. Dennis, "Coherent Optical Phase-Modulation Link," IEEE Photon. Technol. Lett. 19, 1206-1208 (2007).
    [CrossRef]
  26. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, "Optical Generation and Distribution of Continuously Tunable Millimeter-Wave Signals Using an Optical Phase Modulator," J. Lightwave Technol. 23, 2687-2695 (2005).
    [CrossRef]
  27. H. Chi, X. Zou, and J. Yao, "Analytical Models for Phase-Modulation-Based Microwave Photonic Systems With Phase Modulation to Intensity Modulation Conversion Using a Dispersive Device," J. Lightwave Technol. 27, 511-521 (2009).
    [CrossRef]
  28. B. Chen, S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG," J. Electromagn. Waves Appl. 23, 161-170 (2009).
    [CrossRef]
  29. R. D. Esman and K. J. Williams, "Wideband Efficiency Improvement of Fiber Optic Systems by Carrier Subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
    [CrossRef]
  30. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 190-192 (2005).
    [CrossRef]
  31. A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase Modulation to Amplitude Modulation Conversion of CW Laser Light in Optical Fibres," Electron. Lett. 22, 409-411 (1986).
    [CrossRef]
  32. A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, "Chromatic Dispersion Limitations in Coherent Lightwave Transmission Systems," J. Lightwave Technol. 6, 704-709 (1988).
    [CrossRef]
  33. U. Gliese, S. Nørskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996).
    [CrossRef]
  34. G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997).
    [CrossRef]

2009 (3)

2008 (1)

2007 (4)

T. R. Clark and M. L. Dennis, "Coherent Optical Phase-Modulation Link," IEEE Photon. Technol. Lett. 19, 1206-1208 (2007).
[CrossRef]

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, "Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation With Direct Detection for Analog-Photonic Links," IEEE Trans. Microw. Theory Tech. 55, 1978-1985 (2007).
[CrossRef]

B. M. Haas and T. E. Murphy, "A Simple, Linearized, Phase-Modulated Analog Optical Transmission System," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

2006 (3)

A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, "Wide-Band Electrooptic Intensity Modulator Frequency Response Measurement Using an Optical Heterodyne Down-Conversion Technique," IEEE Trans. Microw. Theory Tech. 54, 240-246 (2006).
[CrossRef]

Y. Le Guennec, G. Maury, J. Yao, and B. Cabon, "New Optical Microwave Up-Conversion Solution in Radio-Over-Fiber Networks for 60-GHz Wireless Applications," J. Lightwave Technol. 24, 1277-1282 (2006).
[CrossRef]

2005 (3)

F. Zeng and J. Yao, "All-Optical Microwave Mixing and Bandpass Filtering in a Radio-Over-Fiber Link," IEEE Photon. Technol. Lett. 17, 899-901 (2005).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, "Optical Generation and Distribution of Continuously Tunable Millimeter-Wave Signals Using an Optical Phase Modulator," J. Lightwave Technol. 23, 2687-2695 (2005).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

1999 (3)

K.-I. Kitayama and R. A. Griffin, "Optical Downconversion from Millimeter-Wave to IF-Band Over 50-km-Long Optical Fiber Link Using an Electroabsorption Modulator," IEEE Photon. Technol. Lett. 11, 287-289 (1999).
[CrossRef]

Y. Chiu, B. Jalali, S. Garner, and W. Steier, "Broad-Band Electronic Linearizer for Externally Modulated Analog Fiber-Optic Links," IEEE Photon. Technol. Lett. 11, 48-50 (1999).
[CrossRef]

E. I. Ackerman, "Broad-Band Linearization of a Mach-Zehnder Electrooptic Modulator," IEEE Trans. Microw. Theory Tech. 47, 2271-2279 (1999).
[CrossRef]

1997 (2)

R. Helkey, J. C. Twichell, and C. CoxIII, "A Down-Conversion Optical Link with RF Gain," J. Lightwave Technol. 15, 956-961 (1997).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997).
[CrossRef]

1996 (3)

U. Gliese, S. Nørskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996).
[CrossRef]

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, "A Photonic-Link Millimeter Wave Mixer Using Cascaded Optical Modulators and Harmonic Carrier Generation," IEEE Photon. Technol. Lett. 8, 1166-1168 (1996).
[CrossRef]

G. E. Betts and F. J. O’Donnell, "Microwave Analog Optical Links Using Suboctave Linearized Modulators," IEEE Photon. Technol. Lett. 8, 1273-1275 (1996).
[CrossRef]

1995 (3)

A. C. Lindsay, G. A. Knight, and S. T. Winnall, "Photonic Mixers for Wide Bandwidth RF Receiver Applications," IEEE Trans. Microw. Theory Tech. 43, 2311-2317 (1995).
[CrossRef]

W. B. Bridges and J. H. Schaffner, "Distortion in Linearized Electrooptic Modulators," IEEE Trans. Microw. Theory Tech. 43, 2184-2197 (1995).
[CrossRef]

R. D. Esman and K. J. Williams, "Wideband Efficiency Improvement of Fiber Optic Systems by Carrier Subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

1993 (2)

M. Nazarathy, J. Berger, A. J. Ley, I. M. Levi, and Y. Kagan, "Progress in Externally Modulated AM CATV Transmission Systems," J. Lightwave Technol. 11, 82-105 (1993).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave-Optical Mixing in LiNbO3 Modulators," IEEE Trans. Microw. Theory Tech. 41, 2383-2391 (1993).
[CrossRef]

1991 (1)

M. L. Farwell, Z.-Q. Lin, E. Wooten, and W. S. C. Chang, "An Electrooptic Intensity Modulator with Improved Linearity," IEEE Photon. Technol. Lett. 3, 792-795 (1991).
[CrossRef]

1990 (1)

S. K. Korotky and R. M. de Ridder, "Dual Parallel Modulation Schemes for Low-Distortion Analog Optical Transmission," IEEE J. Sel. Areas Comm. 8, 1377-1381 (1990).
[CrossRef]

1989 (1)

T. S. Tan, R. L. Jungerman, and S. S. Elliott, "Optical Receiver and Modulator Frequency Response Measurement with a Nd:YAG Ring Laser Heterodyne Technique," IEEE Trans. Microw. Theory Tech. 37, 1217-1222 (1989).
[CrossRef]

1988 (2)

L. M. Johnson and H. V. Roussell, "Reduction of intermodulation distortion in interferometric optical modulators," Opt. Lett. 13, 928-930 (1988).
[CrossRef] [PubMed]

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, "Chromatic Dispersion Limitations in Coherent Lightwave Transmission Systems," J. Lightwave Technol. 6, 704-709 (1988).
[CrossRef]

1986 (1)

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase Modulation to Amplitude Modulation Conversion of CW Laser Light in Optical Fibres," Electron. Lett. 22, 409-411 (1986).
[CrossRef]

Ackerman, E. I.

E. I. Ackerman, "Broad-Band Linearization of a Mach-Zehnder Electrooptic Modulator," IEEE Trans. Microw. Theory Tech. 47, 2271-2279 (1999).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997).
[CrossRef]

Alferness, R. C.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase Modulation to Amplitude Modulation Conversion of CW Laser Light in Optical Fibres," Electron. Lett. 22, 409-411 (1986).
[CrossRef]

Atlas, D. A.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, "Chromatic Dispersion Limitations in Coherent Lightwave Transmission Systems," J. Lightwave Technol. 6, 704-709 (1988).
[CrossRef]

Attygalle, M.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Belisle, C.

Berger, J.

M. Nazarathy, J. Berger, A. J. Ley, I. M. Levi, and Y. Kagan, "Progress in Externally Modulated AM CATV Transmission Systems," J. Lightwave Technol. 11, 82-105 (1993).
[CrossRef]

Betts, G. E.

G. E. Betts and F. J. O’Donnell, "Microwave Analog Optical Links Using Suboctave Linearized Modulators," IEEE Photon. Technol. Lett. 8, 1273-1275 (1996).
[CrossRef]

Bowers, J. E.

Bridges, W. B.

W. B. Bridges and J. H. Schaffner, "Distortion in Linearized Electrooptic Modulators," IEEE Trans. Microw. Theory Tech. 43, 2184-2197 (1995).
[CrossRef]

Bucholtz, F.

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, "Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation With Direct Detection for Analog-Photonic Links," IEEE Trans. Microw. Theory Tech. 55, 1978-1985 (2007).
[CrossRef]

Buhl, L. L.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase Modulation to Amplitude Modulation Conversion of CW Laser Light in Optical Fibres," Electron. Lett. 22, 409-411 (1986).
[CrossRef]

Bulmer, C. H.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave-Optical Mixing in LiNbO3 Modulators," IEEE Trans. Microw. Theory Tech. 41, 2383-2391 (1993).
[CrossRef]

Burns, W. K.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, "A Photonic-Link Millimeter Wave Mixer Using Cascaded Optical Modulators and Harmonic Carrier Generation," IEEE Photon. Technol. Lett. 8, 1166-1168 (1996).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave-Optical Mixing in LiNbO3 Modulators," IEEE Trans. Microw. Theory Tech. 41, 2383-2391 (1993).
[CrossRef]

Cabon, B.

Capmany, J.

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

Chang, W. S. C.

M. L. Farwell, Z.-Q. Lin, E. Wooten, and W. S. C. Chang, "An Electrooptic Intensity Modulator with Improved Linearity," IEEE Photon. Technol. Lett. 3, 792-795 (1991).
[CrossRef]

Chen, B.

B. Chen, S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG," J. Electromagn. Waves Appl. 23, 161-170 (2009).
[CrossRef]

Chi, H.

B. Chen, S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG," J. Electromagn. Waves Appl. 23, 161-170 (2009).
[CrossRef]

H. Chi, X. Zou, and J. Yao, "Analytical Models for Phase-Modulation-Based Microwave Photonic Systems With Phase Modulation to Intensity Modulation Conversion Using a Dispersive Device," J. Lightwave Technol. 27, 511-521 (2009).
[CrossRef]

Chiu, Y.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, "Broad-Band Electronic Linearizer for Externally Modulated Analog Fiber-Optic Links," IEEE Photon. Technol. Lett. 11, 48-50 (1999).
[CrossRef]

Chou, H.-F.

Chraplyvy, A. R.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase Modulation to Amplitude Modulation Conversion of CW Laser Light in Optical Fibres," Electron. Lett. 22, 409-411 (1986).
[CrossRef]

Clark, T. R.

T. R. Clark and M. L. Dennis, "Coherent Optical Phase-Modulation Link," IEEE Photon. Technol. Lett. 19, 1206-1208 (2007).
[CrossRef]

Coldren, L. A.

Cox, C.

R. Helkey, J. C. Twichell, and C. CoxIII, "A Down-Conversion Optical Link with RF Gain," J. Lightwave Technol. 15, 956-961 (1997).
[CrossRef]

Daut, D. G.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, "Chromatic Dispersion Limitations in Coherent Lightwave Transmission Systems," J. Lightwave Technol. 6, 704-709 (1988).
[CrossRef]

de Ridder, R. M.

S. K. Korotky and R. M. de Ridder, "Dual Parallel Modulation Schemes for Low-Distortion Analog Optical Transmission," IEEE J. Sel. Areas Comm. 8, 1377-1381 (1990).
[CrossRef]

Dennis, M. L.

T. R. Clark and M. L. Dennis, "Coherent Optical Phase-Modulation Link," IEEE Photon. Technol. Lett. 19, 1206-1208 (2007).
[CrossRef]

Devgan, P. S.

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, "Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation With Direct Detection for Analog-Photonic Links," IEEE Trans. Microw. Theory Tech. 55, 1978-1985 (2007).
[CrossRef]

Edvell, G.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Elliott, S. S.

T. S. Tan, R. L. Jungerman, and S. S. Elliott, "Optical Receiver and Modulator Frequency Response Measurement with a Nd:YAG Ring Laser Heterodyne Technique," IEEE Trans. Microw. Theory Tech. 37, 1217-1222 (1989).
[CrossRef]

Elrefaie, A. F.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, "Chromatic Dispersion Limitations in Coherent Lightwave Transmission Systems," J. Lightwave Technol. 6, 704-709 (1988).
[CrossRef]

Esman, R. D.

R. D. Esman and K. J. Williams, "Wideband Efficiency Improvement of Fiber Optic Systems by Carrier Subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

Fairburn, M.

A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, "Wide-Band Electrooptic Intensity Modulator Frequency Response Measurement Using an Optical Heterodyne Down-Conversion Technique," IEEE Trans. Microw. Theory Tech. 54, 240-246 (2006).
[CrossRef]

Farwell, M. L.

M. L. Farwell, Z.-Q. Lin, E. Wooten, and W. S. C. Chang, "An Electrooptic Intensity Modulator with Improved Linearity," IEEE Photon. Technol. Lett. 3, 792-795 (1991).
[CrossRef]

Garner, S.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, "Broad-Band Electronic Linearizer for Externally Modulated Analog Fiber-Optic Links," IEEE Photon. Technol. Lett. 11, 48-50 (1999).
[CrossRef]

Gliese, U.

U. Gliese, S. Nørskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996).
[CrossRef]

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave-Optical Mixing in LiNbO3 Modulators," IEEE Trans. Microw. Theory Tech. 41, 2383-2391 (1993).
[CrossRef]

Griffin, R. A.

K.-I. Kitayama and R. A. Griffin, "Optical Downconversion from Millimeter-Wave to IF-Band Over 50-km-Long Optical Fiber Link Using an Electroabsorption Modulator," IEEE Photon. Technol. Lett. 11, 287-289 (1999).
[CrossRef]

Haas, B. M.

B. M. Haas and T. E. Murphy, "A Simple, Linearized, Phase-Modulated Analog Optical Transmission System," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

Helkey, R.

R. Helkey, J. C. Twichell, and C. CoxIII, "A Down-Conversion Optical Link with RF Gain," J. Lightwave Technol. 15, 956-961 (1997).
[CrossRef]

Hraimel, B.

Jaeger, N. A. F.

A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, "Wide-Band Electrooptic Intensity Modulator Frequency Response Measurement Using an Optical Heterodyne Down-Conversion Technique," IEEE Trans. Microw. Theory Tech. 54, 240-246 (2006).
[CrossRef]

Jalali, B.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, "Broad-Band Electronic Linearizer for Externally Modulated Analog Fiber-Optic Links," IEEE Photon. Technol. Lett. 11, 48-50 (1999).
[CrossRef]

Jin, X. F.

B. Chen, S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG," J. Electromagn. Waves Appl. 23, 161-170 (2009).
[CrossRef]

Johansson, L. A.

Johnson, L. M.

Jungerman, R. L.

T. S. Tan, R. L. Jungerman, and S. S. Elliott, "Optical Receiver and Modulator Frequency Response Measurement with a Nd:YAG Ring Laser Heterodyne Technique," IEEE Trans. Microw. Theory Tech. 37, 1217-1222 (1989).
[CrossRef]

Kagan, Y.

M. Nazarathy, J. Berger, A. J. Ley, I. M. Levi, and Y. Kagan, "Progress in Externally Modulated AM CATV Transmission Systems," J. Lightwave Technol. 11, 82-105 (1993).
[CrossRef]

Kitayama, K.-I.

K.-I. Kitayama and R. A. Griffin, "Optical Downconversion from Millimeter-Wave to IF-Band Over 50-km-Long Optical Fiber Link Using an Electroabsorption Modulator," IEEE Photon. Technol. Lett. 11, 287-289 (1999).
[CrossRef]

Klamkin, J.

Knight, G. A.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, "Photonic Mixers for Wide Bandwidth RF Receiver Applications," IEEE Trans. Microw. Theory Tech. 43, 2311-2317 (1995).
[CrossRef]

Korotky, S. K.

S. K. Korotky and R. M. de Ridder, "Dual Parallel Modulation Schemes for Low-Distortion Analog Optical Transmission," IEEE J. Sel. Areas Comm. 8, 1377-1381 (1990).
[CrossRef]

Lam, A. K. M.

A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, "Wide-Band Electrooptic Intensity Modulator Frequency Response Measurement Using an Optical Heterodyne Down-Conversion Technique," IEEE Trans. Microw. Theory Tech. 54, 240-246 (2006).
[CrossRef]

Le Guennec, Y.

Levi, I. M.

M. Nazarathy, J. Berger, A. J. Ley, I. M. Levi, and Y. Kagan, "Progress in Externally Modulated AM CATV Transmission Systems," J. Lightwave Technol. 11, 82-105 (1993).
[CrossRef]

Ley, A. J.

M. Nazarathy, J. Berger, A. J. Ley, I. M. Levi, and Y. Kagan, "Progress in Externally Modulated AM CATV Transmission Systems," J. Lightwave Technol. 11, 82-105 (1993).
[CrossRef]

Lim, C.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Lin, Z.-Q.

M. L. Farwell, Z.-Q. Lin, E. Wooten, and W. S. C. Chang, "An Electrooptic Intensity Modulator with Improved Linearity," IEEE Photon. Technol. Lett. 3, 792-795 (1991).
[CrossRef]

Lindsay, A. C.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, "Photonic Mixers for Wide Bandwidth RF Receiver Applications," IEEE Trans. Microw. Theory Tech. 43, 2311-2317 (1995).
[CrossRef]

Masella, B.

Maury, G.

McKinney, J. D.

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, "Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation With Direct Detection for Analog-Photonic Links," IEEE Trans. Microw. Theory Tech. 55, 1978-1985 (2007).
[CrossRef]

Murphy, T. E.

B. M. Haas and T. E. Murphy, "A Simple, Linearized, Phase-Modulated Analog Optical Transmission System," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

Nazarathy, M.

M. Nazarathy, J. Berger, A. J. Ley, I. M. Levi, and Y. Kagan, "Progress in Externally Modulated AM CATV Transmission Systems," J. Lightwave Technol. 11, 82-105 (1993).
[CrossRef]

Nielsen, T. N.

U. Gliese, S. Nørskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996).
[CrossRef]

Nirmalathas, A.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Nørskov, S.

U. Gliese, S. Nørskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997).
[CrossRef]

O’Donnell, F. J.

G. E. Betts and F. J. O’Donnell, "Microwave Analog Optical Links Using Suboctave Linearized Modulators," IEEE Photon. Technol. Lett. 8, 1273-1275 (1996).
[CrossRef]

Orazi, R. J.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, "A Photonic-Link Millimeter Wave Mixer Using Cascaded Optical Modulators and Harmonic Carrier Generation," IEEE Photon. Technol. Lett. 8, 1166-1168 (1996).
[CrossRef]

Pappert, S. A.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, "A Photonic-Link Millimeter Wave Mixer Using Cascaded Optical Modulators and Harmonic Carrier Generation," IEEE Photon. Technol. Lett. 8, 1166-1168 (1996).
[CrossRef]

Paquet, S.

Pendock, G. J.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Qi, G.

Ramaswamy, A.

Rodwell, M. J.

Roussell, H. V.

Schaffner, J. H.

W. B. Bridges and J. H. Schaffner, "Distortion in Linearized Electrooptic Modulators," IEEE Trans. Microw. Theory Tech. 43, 2184-2197 (1995).
[CrossRef]

Seeds, A. J.

Seregelyi, J.

Sheldon, C.

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997).
[CrossRef]

Steier, W.

Y. Chiu, B. Jalali, S. Garner, and W. Steier, "Broad-Band Electronic Linearizer for Externally Modulated Analog Fiber-Optic Links," IEEE Photon. Technol. Lett. 11, 48-50 (1999).
[CrossRef]

Sun, C. K.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, "A Photonic-Link Millimeter Wave Mixer Using Cascaded Optical Modulators and Harmonic Carrier Generation," IEEE Photon. Technol. Lett. 8, 1166-1168 (1996).
[CrossRef]

Tan, T. S.

T. S. Tan, R. L. Jungerman, and S. S. Elliott, "Optical Receiver and Modulator Frequency Response Measurement with a Nd:YAG Ring Laser Heterodyne Technique," IEEE Trans. Microw. Theory Tech. 37, 1217-1222 (1989).
[CrossRef]

Tkach, R. W.

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase Modulation to Amplitude Modulation Conversion of CW Laser Light in Optical Fibres," Electron. Lett. 22, 409-411 (1986).
[CrossRef]

Twichell, J. C.

R. Helkey, J. C. Twichell, and C. CoxIII, "A Down-Conversion Optical Link with RF Gain," J. Lightwave Technol. 15, 956-961 (1997).
[CrossRef]

Urick, V. J.

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, "Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation With Direct Detection for Analog-Photonic Links," IEEE Trans. Microw. Theory Tech. 55, 1978-1985 (2007).
[CrossRef]

Wagner, R. E.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, "Chromatic Dispersion Limitations in Coherent Lightwave Transmission Systems," J. Lightwave Technol. 6, 704-709 (1988).
[CrossRef]

Williams, K. J.

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, "Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation With Direct Detection for Analog-Photonic Links," IEEE Trans. Microw. Theory Tech. 55, 1978-1985 (2007).
[CrossRef]

A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

R. D. Esman and K. J. Williams, "Wideband Efficiency Improvement of Fiber Optic Systems by Carrier Subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

Winnall, S. T.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, "Photonic Mixers for Wide Bandwidth RF Receiver Applications," IEEE Trans. Microw. Theory Tech. 43, 2311-2317 (1995).
[CrossRef]

Wooten, E.

M. L. Farwell, Z.-Q. Lin, E. Wooten, and W. S. C. Chang, "An Electrooptic Intensity Modulator with Improved Linearity," IEEE Photon. Technol. Lett. 3, 792-795 (1991).
[CrossRef]

Yao, J.

Zeng, F.

F. Zeng and J. Yao, "All-Optical Microwave Mixing and Bandpass Filtering in a Radio-Over-Fiber Link," IEEE Photon. Technol. Lett. 17, 899-901 (2005).
[CrossRef]

Zhang, X.

Zhang, X. M.

B. Chen, S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG," J. Electromagn. Waves Appl. 23, 161-170 (2009).
[CrossRef]

Zheng, S. L.

B. Chen, S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG," J. Electromagn. Waves Appl. 23, 161-170 (2009).
[CrossRef]

Zou, X.

Electron. Lett. (1)

A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase Modulation to Amplitude Modulation Conversion of CW Laser Light in Optical Fibres," Electron. Lett. 22, 409-411 (1986).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

S. K. Korotky and R. M. de Ridder, "Dual Parallel Modulation Schemes for Low-Distortion Analog Optical Transmission," IEEE J. Sel. Areas Comm. 8, 1377-1381 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (10)

M. L. Farwell, Z.-Q. Lin, E. Wooten, and W. S. C. Chang, "An Electrooptic Intensity Modulator with Improved Linearity," IEEE Photon. Technol. Lett. 3, 792-795 (1991).
[CrossRef]

G. E. Betts and F. J. O’Donnell, "Microwave Analog Optical Links Using Suboctave Linearized Modulators," IEEE Photon. Technol. Lett. 8, 1273-1275 (1996).
[CrossRef]

Y. Chiu, B. Jalali, S. Garner, and W. Steier, "Broad-Band Electronic Linearizer for Externally Modulated Analog Fiber-Optic Links," IEEE Photon. Technol. Lett. 11, 48-50 (1999).
[CrossRef]

B. M. Haas and T. E. Murphy, "A Simple, Linearized, Phase-Modulated Analog Optical Transmission System," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, "A Photonic-Link Millimeter Wave Mixer Using Cascaded Optical Modulators and Harmonic Carrier Generation," IEEE Photon. Technol. Lett. 8, 1166-1168 (1996).
[CrossRef]

R. D. Esman and K. J. Williams, "Wideband Efficiency Improvement of Fiber Optic Systems by Carrier Subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

K.-I. Kitayama and R. A. Griffin, "Optical Downconversion from Millimeter-Wave to IF-Band Over 50-km-Long Optical Fiber Link Using an Electroabsorption Modulator," IEEE Photon. Technol. Lett. 11, 287-289 (1999).
[CrossRef]

F. Zeng and J. Yao, "All-Optical Microwave Mixing and Bandpass Filtering in a Radio-Over-Fiber Link," IEEE Photon. Technol. Lett. 17, 899-901 (2005).
[CrossRef]

T. R. Clark and M. L. Dennis, "Coherent Optical Phase-Modulation Link," IEEE Photon. Technol. Lett. 19, 1206-1208 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (9)

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, "Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation With Direct Detection for Analog-Photonic Links," IEEE Trans. Microw. Theory Tech. 55, 1978-1985 (2007).
[CrossRef]

U. Gliese, S. Nørskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997).
[CrossRef]

T. S. Tan, R. L. Jungerman, and S. S. Elliott, "Optical Receiver and Modulator Frequency Response Measurement with a Nd:YAG Ring Laser Heterodyne Technique," IEEE Trans. Microw. Theory Tech. 37, 1217-1222 (1989).
[CrossRef]

A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, "Wide-Band Electrooptic Intensity Modulator Frequency Response Measurement Using an Optical Heterodyne Down-Conversion Technique," IEEE Trans. Microw. Theory Tech. 54, 240-246 (2006).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave-Optical Mixing in LiNbO3 Modulators," IEEE Trans. Microw. Theory Tech. 41, 2383-2391 (1993).
[CrossRef]

A. C. Lindsay, G. A. Knight, and S. T. Winnall, "Photonic Mixers for Wide Bandwidth RF Receiver Applications," IEEE Trans. Microw. Theory Tech. 43, 2311-2317 (1995).
[CrossRef]

E. I. Ackerman, "Broad-Band Linearization of a Mach-Zehnder Electrooptic Modulator," IEEE Trans. Microw. Theory Tech. 47, 2271-2279 (1999).
[CrossRef]

W. B. Bridges and J. H. Schaffner, "Distortion in Linearized Electrooptic Modulators," IEEE Trans. Microw. Theory Tech. 43, 2184-2197 (1995).
[CrossRef]

J. Electromagn. Waves Appl. (1)

B. Chen, S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG," J. Electromagn. Waves Appl. 23, 161-170 (2009).
[CrossRef]

J. Lightwave Technol. (9)

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, "Chromatic Dispersion Limitations in Coherent Lightwave Transmission Systems," J. Lightwave Technol. 6, 704-709 (1988).
[CrossRef]

A. Ramaswamy, L. A. Johansson, J. Klamkin, H.-F. Chou, C. Sheldon, M. J. Rodwell, L. A. Coldren, and J. E. Bowers, "Integrated Coherent Receivers for High-Linearity Microwave Photonic Links," J. Lightwave Technol. 26, 209-216 (2008).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, "Optical Generation and Distribution of Continuously Tunable Millimeter-Wave Signals Using an Optical Phase Modulator," J. Lightwave Technol. 23, 2687-2695 (2005).
[CrossRef]

H. Chi, X. Zou, and J. Yao, "Analytical Models for Phase-Modulation-Based Microwave Photonic Systems With Phase Modulation to Intensity Modulation Conversion Using a Dispersive Device," J. Lightwave Technol. 27, 511-521 (2009).
[CrossRef]

Y. Le Guennec, G. Maury, J. Yao, and B. Cabon, "New Optical Microwave Up-Conversion Solution in Radio-Over-Fiber Networks for 60-GHz Wireless Applications," J. Lightwave Technol. 24, 1277-1282 (2006).
[CrossRef]

M. Nazarathy, J. Berger, A. J. Ley, I. M. Levi, and Y. Kagan, "Progress in Externally Modulated AM CATV Transmission Systems," J. Lightwave Technol. 11, 82-105 (1993).
[CrossRef]

A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave Technol. 24, 4628-4641 (2006).
[CrossRef]

R. Helkey, J. C. Twichell, and C. CoxIII, "A Down-Conversion Optical Link with RF Gain," J. Lightwave Technol. 15, 956-961 (1997).
[CrossRef]

B. Masella, B. Hraimel, and X. Zhang, "Enhanced Spurious-Free Dynamic Range Using Mixed Polarization in Optical Single Sideband Mach-Zehnder Modulator," J. Lightwave Technol. 27, 3034-3041 (2009).
[CrossRef]

Nat. Photonics (1)

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

Opt. Lett. (1)

Other (1)

Y. Li, D. Yoo, P. Herczfeld, A. Rosen, A. Madjar, and S. Goldwasser, "Receiver for coherent fiber-optic link with high dynamic range and low noise figure," in "Proceedings of Topical Meeting on Microwave Photonics," (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the downconverting RoF link presented here. The system uses two cascaded optical phase modulators, one in the transmitter and one in the receiver, followed by a fiber Bragg grating (FBG) and a square-law photoreceiver. The FBG is chosen to suppress the optical carrier at νc. The receiver phase modulator is driven by a strong microwave LO to produce IF beat products that are detected by an optical photoreceiver.

Fig. 2
Fig. 2

(a) Optical spectrum of the laser (closed circle). (b) Optical spectrum measured after the transmitter phase modulator, showing the optical carrier (closed circle) and sidebands at ±f1 = ±20 GHz (open circles). (c) Optical spectrum measured after the receiver phase modulator driven by a LO, showing additional sidebands at ±f0 = ±19.6 GHz (open squares), ±f1 2f0 = ±19.2 GHz (open triangles), and ±f1f0 = ±400 MHz (no symbol). (d) Measured transmission of the FBG. (e) Optical spectrum measured after the FBG, showing suppression of the optical carrier and sidebands at ±f1f0 = ±400 MHz. (f) Electrical spectrum measured at the photodetector, showing the downconverted tone at f10 = 400 MHz.

Fig. 3
Fig. 3

Calculated (solid lines) and measured DC photocurrent (squares), downconverted signal power (open circles), and third-order intermodulation distortion (IMD3) power (filled circles) as a function of the LO modulation depth m0. The downconverted signal and IMD3 powers grow in proportion to m1 and m 1 3 , respectively, but here they are evaluated at an input modulation depth of m1 = 0.14.

Fig. 4
Fig. 4

Measured downconverted electrical spectra, showing the suppression of intermodulation distortion products achieved by adjusting the LO strength m0. (a) Downconverted spectrum obtained when the LO power was adjusted for maximum gain (i.e., m0 = 1.08). (b) Spectrum obtained under same conditions as (a), but with the LO amplitude increased to m0 = 2.17. (c) Output spectrum obtained under same conditions as in (b), but with the input signal strength increased by +13.8 dB to compensate for the gain penalty. Notice that even when the input amplitude is increased to compensate for the gain penalty, the dynamic range is improved in comparison to the non-linearized case shown in (a).

Fig. 5
Fig. 5

Downconverted signal and intermodulation powers as a function of the input microwave power. The blue curves and open symbols were obtained with a LO amplitude of m0 = 1.08, which gives the highest downconversion gain. The green curves and filled symbols were obtained with m0 = 2.17, which suppresses the third-order intermodulation distortion.

Fig. 6
Fig. 6

Downconversion gain as a function of the signal carrier frequency f1, normalized relative to GMZ, the gain of a comparable non-downconverting link employing a quadrature-biased Mach-Zehnder intensity modulator with direct detection.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

u A ( t ) = P c e j ω c t
u B ( t ) = P c e j ω c t e j m 1 sin Ω 1 t
m 1 = π V 1 V π
u C ( t ) = P c e j ω c t e j m 1 sin Ω 1 t e j m 0 sin Ω 0 t
u C ( t ) = P c e j ω c t l m J l ( m 1 ) J m ( m 0 ) e j ( l Ω 1 + m Ω 0 ) t
u D ( t ) = P c e j ω c t l m ( l + m 0 ) J l ( m 1 ) J m ( m 0 ) e j ( l Ω 1 + m Ω 0 ) t
i ( t ) = R | u D ( t ) | 2 = R P c l m ( l + m 0 ) n p ( n + p 0 ) [ J l ( m 1 ) J m ( m 0 ) J n ( m 1 ) J p ( m 0 ) e j [ ( l n ) Ω 1 + ( m p ) Ω 0 ] t ]
i ( t ) | ω = Ω 10 = R P c l m l J l ( m 1 ) J l + 1 ( m 1 ) J m ( m 0 ) J m 1 ( m 0 ) e j Ω 10 t + c . c .
i ( t ) | ω = Ω 10 = R P c [ l m J l ( m 1 ) J l + 1 ( m 1 ) J m ( m 0 ) J m 1 ( m 0 )
m J m ( m 1 ) J m + 1 ( m 1 ) J m ( m 0 ) J m 1 ( m 0 ) ] e j Ω 10 t + c . c .
i ( t ) | ω = Ω 10 = I 10 cos Ω 10 t
I 10 2 R P c m J m ( m 1 ) J m 1 ( m 1 ) J m ( m 0 ) J m 1 ( m 0 )
I 10 = R P c [ 2 m 1 J 0 ( m 0 ) J 1 ( m 0 ) m 1 3 4 ( 3 J 0 ( m 0 ) J 1 ( m 0 ) J 1 ( m 0 ) J 2 ( m 0 ) ) ]
P out = 2 Z out [ R P c m 1 J 0 ( m 0 ) J 1 ( m 0 ) ] 2
P in = 1 2 Z in ( m 1 V π π ) 2
G = ( 2 π R P c V π ) 2 [ J 0 ( m 0 ) J 1 ( m 0 ) ] 2 Z out Z in
G MZ = ( π R P c 2 V π ) 2 Z out Z in
G = 16 [ J 0 ( m 0 ) J 1 ( m 0 ) ] 2 G MZ
3 J 0 ( m 0 ) J 1 ( m 0 ) J 1 ( m 0 ) J 2 ( m 0 ) = 0
I 10 = 2 R P c m 1 J 0 ( m 0 ) J 1 ( m 0 ) cos ( π L D c λ c 2 f 1 2 )
2 L | D | c λ c 2 f 1 2 = 1 , 3 , 5 ,...
f 1 = 1 2 λ c c L | D |
u B ( t ) = P c e j ω c t e j m 1 sin Ω 1 t e j m 2 sin Ω 2 t
u C ( t ) = P c e j ω c t e j m 1 sin Ω 1 t e j m 2 sin Ω 2 t e j m 0 sin Ω 0 t
u C ( t ) = P c e j ω c t l m n J l ( m 1 ) J m ( m 2 ) J n ( m 0 ) e j ( l Ω 1 + m Ω 2 + n Ω 0 ) t
u D ( t ) = P c e j ω c t l m n ( l + m + n 0 ) J l ( m 1 ) J m ( m 2 ) J n ( m 0 ) e j ( l Ω 1 + m Ω 2 + n Ω 0 ) t
i ( t ) = R | u D ( t ) | 2
= R P c l m n ( l + m + n 0 ) p q r ( p + q + r 0 ) J l ( m 1 ) J m ( m 2 ) J n ( m 0 ) J p ( m 1 ) J q ( m 2 ) J r ( m 0 ) × e j [ ( l p ) Ω 1 + ( m q ) Ω 2 + ( n r ) Ω 0 ] t
i ( t ) = R P c { [ Φ 0 ( m 0 ) + Φ 2 ( m 0 ) ( m 1 2 + m 2 2 ) + Φ 4 ( m 0 ) ( m 1 4 + 4 m 1 2 m 2 2 + m 2 4 ) ]
+ [ Φ 1 ( m 0 ) m 1 + Φ 3 ( m 0 ) ( m 1 3 + 2 m 1 m 2 2 ) + Φ 5 ( m 0 ) ( m 1 5 + 6 m 1 3 m 2 2 + 3 m 1 m 2 4 ) ] cos ( Ω 10 t )
+ [ Φ 3 ( m 0 ) m 1 2 m 2 + Φ 5 ( 3 m 1 2 m 2 3 + 2 m 1 4 m 2 ) ] cos ( ( 2 Ω 10 Ω 20 ) t )
+ Φ 5 ( m 0 ) m 1 3 m 2 2 cos ( ( 3 Ω 10 2 Ω 20 ) t ) + similar terms at Ω 20 , ( 2 Ω 20 Ω 10 ) and ( 3 Ω 20 2 Ω 10 ) }
Φ 0 ( m 0 ) 1 J 0 2 ( m 0 ) Φ 1 ( m 0 ) 2 J 0 ( m 0 ) J 1 ( m 0 ) Φ 2 ( m 0 ) 1 2 [ J 0 2 ( m 0 ) J 1 2 ( m 0 ) ] Φ 3 ( m 0 ) 1 4 [ 3 J 0 ( m 0 ) J 1 ( m 0 ) J 1 ( m 0 ) J 2 ( m 0 ) ] Φ 4 ( m 0 ) 1 32 [ 3 J 0 2 ( m 0 ) 4 J 1 2 ( m 0 ) + J 2 2 ( m 0 ) ] Φ 5 ( m 0 ) 1 96 [ 10 J 0 ( m 0 ) J 1 ( m 0 ) 5 J 1 ( m 0 ) J 2 ( m 0 ) + J 0 ( m 0 ) J 1 ( m 0 ) ]

Metrics