Abstract

We have realized a high-detection-efficiency photon number resolving detector at an operating wavelength of about 850 nm. The detector consists of a titanium superconducting transition edge sensor in an optical cavity, which is directly coupled to an optical fiber using an approximately 300-nm gap. The gap reduces the sensitive area and heat capacity of the device, leading to high photon number resolution of 0.42 eV without sacrificing detection efficiency or signal response speed. Wavelength dependent efficiency in fiber-coupled devices, which is due to optical interference between the fiber and the device, is also decreased to less than 1% in this configuration. The overall system detection efficiency is 98%±1% at wavelengths of around 850 nm, which is the highest value ever reported in this wavelength range.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [CrossRef]
  2. K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Opt. Express 18(8), 8107–8114 (2010).
    [CrossRef] [PubMed]
  3. N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics 4(9), 655–660 (2010).
    [CrossRef]
  4. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
    [CrossRef]
  5. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83(4), 791–793 (2003).
    [CrossRef]
  6. K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett. 66(15), 1998–2000 (1995).
    [CrossRef]
  7. D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, “Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15(2), 575–578 (2005).
    [CrossRef]
  8. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
    [CrossRef] [PubMed]
  9. D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).
  10. D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
    [CrossRef]
  11. D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
    [CrossRef]
  12. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
    [CrossRef]
  13. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
    [CrossRef]
  14. I. Vayshenker, J. H. Lehman, D. J. Livigni, X. Li, K. Amemiya, D. Fukuda, S. Mukai, S. Kimura, M. Endo, J. Morel, and A. Gambon, “Trilateral optical powermeter comparison between NIST, NMIJ/AIST, and METAS,” Appl. Opt. 46(5), 643–647 (2007).
    [CrossRef] [PubMed]
  15. I. Vayshenker, S. Yang, K. Amemiya, S. Mukai, and T. Zama, “Optical high-power nonlinearity comparison between the National Institute of Standards and Technology and the National Metrology Institute of Japan at 1480 nm,” Appl. Opt. 49(1), 32–36 (2010).
    [CrossRef] [PubMed]
  16. “Guide to the expression of uncertainty in measurement”, International Organization for Standardization, ISBN 92–67–101188–9 (1995).

2010 (4)

N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics 4(9), 655–660 (2010).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

I. Vayshenker, S. Yang, K. Amemiya, S. Mukai, and T. Zama, “Optical high-power nonlinearity comparison between the National Institute of Standards and Technology and the National Metrology Institute of Japan at 1480 nm,” Appl. Opt. 49(1), 32–36 (2010).
[CrossRef] [PubMed]

K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Opt. Express 18(8), 8107–8114 (2010).
[CrossRef] [PubMed]

2009 (4)

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[CrossRef]

2008 (2)

D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
[CrossRef]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

2007 (1)

2005 (1)

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, “Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15(2), 575–578 (2005).
[CrossRef]

2003 (1)

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83(4), 791–793 (2003).
[CrossRef]

1998 (1)

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[CrossRef]

1995 (1)

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett. 66(15), 1998–2000 (1995).
[CrossRef]

Amemiya, K.

Baek, B.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Berggren, K. K.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
[CrossRef]

Cabrera, B.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[CrossRef]

Clarke, R. M.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[CrossRef]

Colling, P.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[CrossRef]

Damayanthi, R. M. T.

D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
[CrossRef]

Dauler, E. A.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
[CrossRef]

Dorenbos, S. N.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Endo, M.

Fujii, G.

K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Opt. Express 18(8), 8107–8114 (2010).
[CrossRef] [PubMed]

N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics 4(9), 655–660 (2010).
[CrossRef]

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
[CrossRef]

Fujino, H.

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

Fujiwara, M.

Fukuda, D.

K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Opt. Express 18(8), 8107–8114 (2010).
[CrossRef] [PubMed]

N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics 4(9), 655–660 (2010).
[CrossRef]

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
[CrossRef]

I. Vayshenker, J. H. Lehman, D. J. Livigni, X. Li, K. Amemiya, D. Fukuda, S. Mukai, S. Kimura, M. Endo, J. Morel, and A. Gambon, “Trilateral optical powermeter comparison between NIST, NMIJ/AIST, and METAS,” Appl. Opt. 46(5), 643–647 (2007).
[CrossRef] [PubMed]

Gambon, A.

Goltsman, G.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
[CrossRef]

Hadfield, R. H.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[CrossRef]

Hamilton, S. A.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
[CrossRef]

Inoue, S.

K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Opt. Express 18(8), 8107–8114 (2010).
[CrossRef] [PubMed]

N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics 4(9), 655–660 (2010).
[CrossRef]

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
[CrossRef]

Irwin, K. D.

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett. 66(15), 1998–2000 (1995).
[CrossRef]

Ishii, H.

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

Itatani, T.

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

Kerman, A. J.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
[CrossRef]

Kimura, S.

Klapwijk, T. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Kurimura, S.

N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics 4(9), 655–660 (2010).
[CrossRef]

Lehman, J. H.

Li, X.

Lita, A. E.

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, “Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15(2), 575–578 (2005).
[CrossRef]

Livigni, D. J.

Martinis, J. M.

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83(4), 791–793 (2003).
[CrossRef]

Miller, A. J.

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, “Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15(2), 575–578 (2005).
[CrossRef]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83(4), 791–793 (2003).
[CrossRef]

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[CrossRef]

Morel, J.

Mukai, S.

Nam, S.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, “Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15(2), 575–578 (2005).
[CrossRef]

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[CrossRef]

Nam, S. W.

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83(4), 791–793 (2003).
[CrossRef]

Namekata, N.

N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics 4(9), 655–660 (2010).
[CrossRef]

Natarajan, C. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Numata, T.

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).

O’Connor, J. A.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Ohkubo, M.

D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
[CrossRef]

Pottapenjara, V. K.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Robinson, B. S.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
[CrossRef]

Romani, R. W.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[CrossRef]

Rosenberg, D.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, “Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15(2), 575–578 (2005).
[CrossRef]

Sasaki, M.

Schwall, R. E.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, “Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15(2), 575–578 (2005).
[CrossRef]

Sergienko, A. V.

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83(4), 791–793 (2003).
[CrossRef]

Takahashi, H.

D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
[CrossRef]

Takahashi, Y.

N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics 4(9), 655–660 (2010).
[CrossRef]

Takeoka, M.

Tanner, M. G.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Tsuchida, H.

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).

D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
[CrossRef]

Tsujino, K.

Ureña, E. B.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Vayshenker, I.

Voronov, B.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
[CrossRef]

Warburton, R. J.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Yang, J. K. W.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
[CrossRef]

Yang, S.

Yoshizawa, A.

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).

D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
[CrossRef]

Zama, T.

I. Vayshenker, S. Yang, K. Amemiya, S. Mukai, and T. Zama, “Optical high-power nonlinearity comparison between the National Institute of Standards and Technology and the National Metrology Institute of Japan at 1480 nm,” Appl. Opt. 49(1), 32–36 (2010).
[CrossRef] [PubMed]

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).

Zijlstra, T.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Zwiller, V.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[CrossRef]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83(4), 791–793 (2003).
[CrossRef]

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett. 66(15), 1998–2000 (1995).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[CrossRef]

IEEE Trans. Appl. Supercond. (1)

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, “Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15(2), 575–578 (2005).
[CrossRef]

J. Low Temp. Phys. (1)

D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008).
[CrossRef]

J. Mod. Opt. (1)

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009).
[CrossRef]

Metrologia (1)

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009).
[CrossRef]

Nat. Photonics (2)

N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics 4(9), 655–660 (2010).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).

Other (1)

“Guide to the expression of uncertainty in measurement”, International Organization for Standardization, ISBN 92–67–101188–9 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of a cross section of an optical TES cavity, produced by focused ion beam milling. The dark and bright layers represent SiO2 and Ta2O5, respectively. The Ti-TES is located between the two red arrows. The upper surface is covered with a tungsten (W) layer as protection against damage by the Ga+ ion beam during milling. The inset is an enlarged view of the contact between the TES and Nb electrodes. (b) Cross-sectional schematic showing the optical-fiber coupling. The fiber is aligned under a microscope using back-side through-chip imaging. A gap with a thickness w gap between the exit end of the fiber and the surface of the antireflection layers is filled with an ultraviolet curable resin.

Fig. 2
Fig. 2

The solid lines show simulation results of wavelength dependent reflectance for an optimized cavity and fiber-coupled devices with wgap values of λeff/4, 1.4×(λeff/4), 2×(λeff/4), 10 μm, 30 μm, and infinity (no fiber coupling). The circles are the measured reflectance results for the fiber-coupled Ti-TES device, which agree well with the simulation results for w gap=1.4×(λeff/4).

Fig. 3
Fig. 3

Experimental setup for detection efficiency measurement. BD: branching device. VA: variable attenuator. Power meter D1 is used to monitor the incident laser power. Terminator prevents unwanted back reflection to BD. Power meter D2 and VA are calibrated based on national standards. A loop near VA is to prevent cladding mode transmission in the optical fiber.

Fig. 4
Fig. 4

(a) Energy distribution of a pulsed laser source measured using the Ti-TES (circles). The light source has a wavelength of 844 nm and an incident photon number μi of ~1.5. Fitted curves using a Poisson distribution convolved with a Gaussian function are also shown (solid). Note that the vertical axes are drawn in log scale. (b) Measured detection probability (circles) of each photon stage for μi from 3×10−3 to 2 photons/pulse with error bars. Fitted curves using a Poisson distribution are also shown.

Metrics