Abstract

Smooth sidewall silicon micro-ring molds have been fabricated using resist reflow and thermal oxidation method. High Q factor polymer micro-ring resonators have been fabricated using these molds. Quality factors as high as 105 have been measured at telecommunication wavelength range. By carefully examining the different loss mechanisms in polymer micro-ring, we find that the surface scattering loss can be as low as 0.23 dB/cm, much smaller than the absorption loss of the polystyrene polymer used in our devices. When used as an ultrasound detector such a high Q polymer micro-ring device can achieve an acoustic sensitivity around 36.3 mV/kPa with 240 μW operating power. A noise equivalent pressure (NEP) is around 88 Pa over a bandwidth range of 1–75 MHz. We have improved the NEP by a factor of 3 compared to our previous best result.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998).
    [PubMed]
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  3. H. Nakano, Y. Matsuda, and S. Nagai, “Ultrasound detection by using a confocal Fabry-Perot interferometer with phase-modulated light,” Ultrasonic 37(3), 257–259 (1999).
    [CrossRef]
  4. S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
    [CrossRef]
  5. P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
    [CrossRef]
  6. E. Z. Zhang and P. Beard, “Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection,” Proc. SPIE 5320, 222–229 (2004).
    [CrossRef]
  7. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2001).
    [CrossRef]
  8. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4069 (2002).
    [CrossRef]
  9. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
    [CrossRef]
  10. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
    [CrossRef]
  11. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-14-11366 .
    [CrossRef] [PubMed]
  12. P. Rabiei, W. H. Steier, Cheng Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [CrossRef]
  13. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonances,” Appl. Phys. Lett. 83(8), 527–529 (2003).
    [CrossRef]
  14. H. S. Sun, A. T. Chen, B. C. Olbricht, J. A. Davies, P. A. Sullivan, Y. Liao, and L. R. Dalton, “Direct electron beam writing of electro-optic polymer microring resonators,” Opt. Express 16(9), 6592–6599 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6592 .
    [CrossRef] [PubMed]
  15. I. M. White, H. Oveys, and X. D. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
    [CrossRef] [PubMed]
  16. T. Ling and L. J. Guo, “A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15(25), 17424–17432 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-25-17424 .
    [CrossRef] [PubMed]
  17. S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
    [CrossRef]
  18. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  19. D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, “Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,” IEEE Photon. Technol. Lett. 17(11), 2352–2354 (2005).
    [CrossRef]
  20. C. Y. Chao and L. J. Guo, “Polymer Micro-ring Resonators Fabricated by Nanoimprint Technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002).
    [CrossRef]
  21. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [CrossRef]
  22. H. C. Liu, Y. H. Lin, and W. Hsu, “Sidewall roughness control in advanced silicon etch process,” Microsyst. Technol. 10(1), 29–34 (2003).
    [CrossRef]
  23. C. Y. Chao and L. J. Guo, “Reduction of Surface Scattering Loss in Polymer Microrings Using Thermal-Reflow Technique,” IEEE Photon. Technol. Lett. 16(6), 1498–1500 (2004).
    [CrossRef]
  24. K. J. Vahala, Optical Microcavities (World Scientific 2004), Chapter 7.
  25. M. Oxborrow, “How to simulate the whispering gallery modes of dielectric microresonator in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J, 64520J-12 (2007).
    [CrossRef]
  26. R. K. Chang, and A. J. Campillo, Optical Processes in Microcavities (World scientific 1996), Chapter 6.
  27. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [CrossRef] [PubMed]
  28. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-5-1515 .
    [CrossRef] [PubMed]
  29. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer Science and Business Media 2009), Chapter 5.
  30. J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse, and D. Haertle, “Fabrication and characterization of whispering-gallery-mode resonators made of polymers,” Opt. Express 17(4), 2573–2578 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-4-2573 .
    [CrossRef] [PubMed]

2009

2008

H. S. Sun, A. T. Chen, B. C. Olbricht, J. A. Davies, P. A. Sullivan, Y. Liao, and L. R. Dalton, “Direct electron beam writing of electro-optic polymer microring resonators,” Opt. Express 16(9), 6592–6599 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6592 .
[CrossRef] [PubMed]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef]

2007

2006

I. M. White, H. Oveys, and X. D. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

2005

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[CrossRef]

D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, “Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,” IEEE Photon. Technol. Lett. 17(11), 2352–2354 (2005).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-5-1515 .
[CrossRef] [PubMed]

2004

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[CrossRef] [PubMed]

C. Y. Chao and L. J. Guo, “Reduction of Surface Scattering Loss in Polymer Microrings Using Thermal-Reflow Technique,” IEEE Photon. Technol. Lett. 16(6), 1498–1500 (2004).
[CrossRef]

E. Z. Zhang and P. Beard, “Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection,” Proc. SPIE 5320, 222–229 (2004).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

2003

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonances,” Appl. Phys. Lett. 83(8), 527–529 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

H. C. Liu, Y. H. Lin, and W. Hsu, “Sidewall roughness control in advanced silicon etch process,” Microsyst. Technol. 10(1), 29–34 (2003).
[CrossRef]

2002

C. Y. Chao and L. J. Guo, “Polymer Micro-ring Resonators Fabricated by Nanoimprint Technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4069 (2002).
[CrossRef]

P. Rabiei, W. H. Steier, Cheng Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
[CrossRef]

2001

1999

H. Nakano, Y. Matsuda, and S. Nagai, “Ultrasound detection by using a confocal Fabry-Perot interferometer with phase-modulated light,” Ultrasonic 37(3), 257–259 (1999).
[CrossRef]

1998

S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998).
[PubMed]

1997

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[CrossRef]

Ahn, S. W.

D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, “Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,” IEEE Photon. Technol. Lett. 17(11), 2352–2354 (2005).
[CrossRef]

Almeida, V. R.

Aristizabal, O.

S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998).
[PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[CrossRef]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4069 (2002).
[CrossRef]

Artman, M.

S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998).
[PubMed]

Ashkenazi, S.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef]

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[CrossRef]

Baldwin, H. S.

S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998).
[PubMed]

Barclay, P. E.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

Beard, P.

E. Z. Zhang and P. Beard, “Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection,” Proc. SPIE 5320, 222–229 (2004).
[CrossRef]

Beard, P. C.

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[CrossRef]

Beckmann, T.

Borselli, M.

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-5-1515 .
[CrossRef] [PubMed]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4069 (2002).
[CrossRef]

Buma, T.

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[CrossRef]

Buse, K.

Cai, M.

Cerrina, F.

Chao, C. Y.

C. Y. Chao and L. J. Guo, “Reduction of Surface Scattering Loss in Polymer Microrings Using Thermal-Reflow Technique,” IEEE Photon. Technol. Lett. 16(6), 1498–1500 (2004).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonances,” Appl. Phys. Lett. 83(8), 527–529 (2003).
[CrossRef]

C. Y. Chao and L. J. Guo, “Polymer Micro-ring Resonators Fabricated by Nanoimprint Technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002).
[CrossRef]

Chen, A. T.

Chen, S. L.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef]

Cheng Zhang,

Dalton, L. R.

Davies, J. A.

Fan, X. D.

Gondarenko, A.

Guo, L. J.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef]

T. Ling and L. J. Guo, “A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15(25), 17424–17432 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-25-17424 .
[CrossRef] [PubMed]

C. Y. Chao and L. J. Guo, “Reduction of Surface Scattering Loss in Polymer Microrings Using Thermal-Reflow Technique,” IEEE Photon. Technol. Lett. 16(6), 1498–1500 (2004).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonances,” Appl. Phys. Lett. 83(8), 527–529 (2003).
[CrossRef]

C. Y. Chao and L. J. Guo, “Polymer Micro-ring Resonators Fabricated by Nanoimprint Technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002).
[CrossRef]

Haertle, D.

Hou, Y.

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[CrossRef]

Hsu, W.

H. C. Liu, Y. H. Lin, and W. Hsu, “Sidewall roughness control in advanced silicon etch process,” Microsyst. Technol. 10(1), 29–34 (2003).
[CrossRef]

Huang, S. W.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef]

Im, J. G.

D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, “Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,” IEEE Photon. Technol. Lett. 17(11), 2352–2354 (2005).
[CrossRef]

Johnson, T. J.

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4069 (2002).
[CrossRef]

Kim, D. H.

D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, “Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,” IEEE Photon. Technol. Lett. 17(11), 2352–2354 (2005).
[CrossRef]

Kimerling, L. C.

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Kwee, L.

S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998).
[PubMed]

Labow, M.

S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998).
[PubMed]

Lee, K. D.

D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, “Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,” IEEE Photon. Technol. Lett. 17(11), 2352–2354 (2005).
[CrossRef]

Lee, K. K.

Lee, S. S.

D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, “Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,” IEEE Photon. Technol. Lett. 17(11), 2352–2354 (2005).
[CrossRef]

Levy, J. S.

Liao, Y.

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4069 (2002).
[CrossRef]

Lim, D. R.

Lin, Y. H.

H. C. Liu, Y. H. Lin, and W. Hsu, “Sidewall roughness control in advanced silicon etch process,” Microsyst. Technol. 10(1), 29–34 (2003).
[CrossRef]

Ling, T.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef]

T. Ling and L. J. Guo, “A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15(25), 17424–17432 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-25-17424 .
[CrossRef] [PubMed]

Lipson, M.

Liu, H. C.

H. C. Liu, Y. H. Lin, and W. Hsu, “Sidewall roughness control in advanced silicon etch process,” Microsyst. Technol. 10(1), 29–34 (2003).
[CrossRef]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Matsuda, Y.

H. Nakano, Y. Matsuda, and S. Nagai, “Ultrasound detection by using a confocal Fabry-Perot interferometer with phase-modulated light,” Ultrasonic 37(3), 257–259 (1999).
[CrossRef]

Maxwell, A.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef]

Mills, T. N.

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[CrossRef]

Nagai, S.

H. Nakano, Y. Matsuda, and S. Nagai, “Ultrasound detection by using a confocal Fabry-Perot interferometer with phase-modulated light,” Ultrasonic 37(3), 257–259 (1999).
[CrossRef]

Nakano, H.

H. Nakano, Y. Matsuda, and S. Nagai, “Ultrasound detection by using a confocal Fabry-Perot interferometer with phase-modulated light,” Ultrasonic 37(3), 257–259 (1999).
[CrossRef]

O’Donnell, M.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef]

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[CrossRef]

Olbricht, B. C.

Oveys, H.

Oxborrow, M.

M. Oxborrow, “How to simulate the whispering gallery modes of dielectric microresonator in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J, 64520J-12 (2007).
[CrossRef]

Painter, O.

Rabiei, P.

Schwesyg, J. R.

Sercel, P. C.

Shin, J.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[CrossRef]

Srinivasan, K.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

Srinivasan, S.

S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998).
[PubMed]

Steier, W. H.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Sullivan, P. A.

Sun, H. S.

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4069 (2002).
[CrossRef]

Turnbull, D. H.

S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998).
[PubMed]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2001).
[CrossRef]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4069 (2002).
[CrossRef]

Wang, L. V.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

White, I. M.

Zhang, E. Z.

E. Z. Zhang and P. Beard, “Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection,” Proc. SPIE 5320, 222–229 (2004).
[CrossRef]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Zimmermann, A. S.

Appl. Phys. Lett.

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4069 (2002).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonances,” Appl. Phys. Lett. 83(8), 527–529 (2003).
[CrossRef]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef]

Circulation

S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998).
[PubMed]

Electron. Lett.

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, “Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,” IEEE Photon. Technol. Lett. 17(11), 2352–2354 (2005).
[CrossRef]

C. Y. Chao and L. J. Guo, “Reduction of Surface Scattering Loss in Polymer Microrings Using Thermal-Reflow Technique,” IEEE Photon. Technol. Lett. 16(6), 1498–1500 (2004).
[CrossRef]

J. Lightwave Technol.

J. Vac. Sci. Technol. B

C. Y. Chao and L. J. Guo, “Polymer Micro-ring Resonators Fabricated by Nanoimprint Technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002).
[CrossRef]

Microsyst. Technol.

H. C. Liu, Y. H. Lin, and W. Hsu, “Sidewall roughness control in advanced silicon etch process,” Microsyst. Technol. 10(1), 29–34 (2003).
[CrossRef]

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

M. Oxborrow, “How to simulate the whispering gallery modes of dielectric microresonator in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J, 64520J-12 (2007).
[CrossRef]

E. Z. Zhang and P. Beard, “Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection,” Proc. SPIE 5320, 222–229 (2004).
[CrossRef]

Ultrasonic

H. Nakano, Y. Matsuda, and S. Nagai, “Ultrasound detection by using a confocal Fabry-Perot interferometer with phase-modulated light,” Ultrasonic 37(3), 257–259 (1999).
[CrossRef]

Other

R. K. Chang, and A. J. Campillo, Optical Processes in Microcavities (World scientific 1996), Chapter 6.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer Science and Business Media 2009), Chapter 5.

K. J. Vahala, Optical Microcavities (World Scientific 2004), Chapter 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sidewall SEM image of the polymer micro-ring fabricated from the mold: (a) without resist reflow process, (b) with resist reflow process, (c) with resist reflow and thermal oxidation process.

Fig. 2
Fig. 2

Transmission spectrum of polymer micro-ring fabricated from the mold (a) without resist reflow process, (b) with resist reflow process, (c) with resist reflow and thermal oxidation process. All the black dot curves are experimental data and red line curves are Lorentz fitting curves.

Fig. 3
Fig. 3

Transmission spectra of polymer micro-rings with different input power.

Fig. 4
Fig. 4

Relationship between intra-cavity energy and absorbed power.

Fig. 5
Fig. 5

(a) Transmission spectrum of polymer micro-ring immerged in DI water. (b) Single shot of acoustic waveform measured by high Q polymer micro-ring.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 Q t o t a l = 1 Q int r i n s i c + 1 Q c o u p l e = 1 Q r a d + 1 Q s c a t t + 1 Q a b s + 1 Q c o u p l e ,
T = τ 2 + a 2 2 a τ cos φ 1 + τ 2 a 2 2 a τ cos φ ,
Q int r i n s i c = 4 π 2 R n e f f | 2 ln a | λ 0
P a b s = 1 λ ( α + 1 n d n d T ) R t h Δ λ .

Metrics