Abstract

The generation of stable and high-quality single-sideband (SSB) multi-carrier source based on recirculating frequency shifter (RFS) is analyzed theoretically and realized experimentally. The impact factors originated from the modulator intrinsic imperfections, deviation from the right operation bias voltage, as well as the unbalanced amplitude and phase of the radio frequency (RF) drive signals, have different influences on the output spectrum of the transfer function, which is the decisive factor in generating the high-quality multi-carrier output. Based on the theoretical analysis, the stable and high-quality 50-tone output was successfully realized. The experiments under some implementation imperfections have also been carried out. The imperfect and low-quality output results are in good agreement with the theoretical analysis.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ellis, F. Gunning, B. Cuenot, T. Healy, E. Pincemin, “Towards 1TbE using coherent WDM,” OECC. WeA-1, (2008).
  2. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, M. Belmonte, F. Forghieri, C. Muzio, S. Piciaccia, A. Brinciotti, A. Porta, C. Lezzi, S. Savory, S. Abrate, “Investigation of the Impact of Ultra-Narrow Carrier Spacing on the Transmission of a 10-Carrier 1Tb/s Superchannel,” OFC. OThD3, (2010).
  3. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF,” IEEE Photon. Technol. 22(19), 1419–1421 (2010).
    [CrossRef]
  4. X. Zhou, J. Yu, M. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, H. Matthew, and S. Mishra, “32Tb/s (320 × 114Gb/s) PDM-RZ-8QAM transmission over 580km of SMF-28 ultra-low-loss fiber”. OFC. PDPB4, (2009).
  5. J. Yu, X. Zhou, and M. Huang, “High-Speed PDM-RZ-8QAM DWDM Transmission (160 × 114 Gb/s) Over 640 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. 21(18), 1299–1301 (2009).
    [CrossRef]
  6. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
    [CrossRef] [PubMed]
  7. X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
    [CrossRef]
  8. R. Dischler, F. Buchali, “Transmission of 1.2 Tb/s Continuous Waveband PDM-OFDM-FDM signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” OFC. PDPC2, (2009).
  9. H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, S. Kamei, “13.5-Tb/s (135 × 111-Gb/s/ch) No-Guard-Interval Coherent OFDM Transmission over 6,248 km using SNR Maximized Second-order DRA in the Extended L-band,” OFC. PDPB5, (2009).
  10. Y. Tang and W. Shieh, “Coherent Optical OFDM Transmission Up to 1 Tb/s per Channel,” J. Lightwave Technol. 27(16), 3511–3517 (2009).
    [CrossRef]
  11. S. Chandrasekhar, X. Liu, “Terabit superchannels for high spectral efficiency transmission,” ECOC. Tu.3.C.5, (2010).
  12. Y. Ma, Q. Yang, Y. Tang, S. Chen, W. Shieh, “1-Tb/s per Channel Coherent Optical OFDM Transmission with Subwavelength Bandwidth Access,” OFC. PDPC1, (2009).
  13. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  14. S. Chandrasekhar, X. Liu, B. Zhu, D. Peckham, “Transmission of a 1.2-Tb/s 24-Carrier No-Guard-Interval Coherent OFDM Superchannel over 7200-km of Ultra-Large-Area Fiber,” ECOC. PD2.6, (2009).
  15. B. Zhu, X. Liu, S. Chandrasekhar, D. Peckham, and R. Lingle, “Ultra-Long-Haul Transmission of 1.2-Tb/s Multicarrier No-Guard-Interval CO-OFDM Superchannel Using Ultra-Large-Area Fiber,” IEEE Photon. Technol. 22(11), 826–828 (2010).
    [CrossRef]
  16. X. Liu, S. Chandrasekhar, B. Zhu, D. Peckham, “Efficient Digital Coherent Detection of A 1.2-Tb/s 24-Carrier No-Guard-Interval CO-OFDM Signal by Simultaneously Detecting Multiple Carriers Per Sampling,” OFC. OWO2, (2010).
  17. S. Chen, Y. Ma, W. Shieh, “110-Gb/s Multi-band Real-time Coherent Optical OFDM Reception after 600-km Transmission over SSMF Fiber”. OFC. OMS2, (2010).
  18. T. Healy, F. Gunning, A. Ellis, and J. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
    [CrossRef] [PubMed]
  19. R. Maher, P. Anandarajah, S. Ibrahim, L. Barry, A. Ellis, P. Perry, R. Phelan, B. Kelly, and J. Gorman, “Low Cost Comb Source in a Coherent Wavelength Division Multiplexed System” ECOC. P3.07, (2010).
  20. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol. 28(4), 308–315 (2010).
    [CrossRef]
  21. J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18(17), 17597–17609 (2010).
    [CrossRef] [PubMed]
  22. W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Compensation for I/Q Imbalances and Bias Deviation of the Mach–Zehnder Modulators in Direct-Detected Optical OFDM Systems,” IEEE Photon. Technol. 21(2), 103–105 (2009).
    [CrossRef]

2010 (5)

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

B. Zhu, X. Liu, S. Chandrasekhar, D. Peckham, and R. Lingle, “Ultra-Long-Haul Transmission of 1.2-Tb/s Multicarrier No-Guard-Interval CO-OFDM Superchannel Using Ultra-Large-Area Fiber,” IEEE Photon. Technol. 22(11), 826–828 (2010).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF,” IEEE Photon. Technol. 22(19), 1419–1421 (2010).
[CrossRef]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18(17), 17597–17609 (2010).
[CrossRef] [PubMed]

2009 (5)

J. Yu, X. Zhou, and M. Huang, “High-Speed PDM-RZ-8QAM DWDM Transmission (160 × 114 Gb/s) Over 640 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. 21(18), 1299–1301 (2009).
[CrossRef]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
[CrossRef] [PubMed]

Y. Tang and W. Shieh, “Coherent Optical OFDM Transmission Up to 1 Tb/s per Channel,” J. Lightwave Technol. 27(16), 3511–3517 (2009).
[CrossRef]

S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
[CrossRef] [PubMed]

W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Compensation for I/Q Imbalances and Bias Deviation of the Mach–Zehnder Modulators in Direct-Detected Optical OFDM Systems,” IEEE Photon. Technol. 21(2), 103–105 (2009).
[CrossRef]

2007 (1)

Bosco, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF,” IEEE Photon. Technol. 22(19), 1419–1421 (2010).
[CrossRef]

Buhl, L.

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

Bull, J.

Burrows, E.

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

Cappuzzo, M.

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

Carena, A.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF,” IEEE Photon. Technol. 22(19), 1419–1421 (2010).
[CrossRef]

Chandrasekhar, S.

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

B. Zhu, X. Liu, S. Chandrasekhar, D. Peckham, and R. Lingle, “Ultra-Long-Haul Transmission of 1.2-Tb/s Multicarrier No-Guard-Interval CO-OFDM Superchannel Using Ultra-Large-Area Fiber,” IEEE Photon. Technol. 22(11), 826–828 (2010).
[CrossRef]

S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
[CrossRef] [PubMed]

Chen, S.

Chen, Y.

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

Chi, S.

W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Compensation for I/Q Imbalances and Bias Deviation of the Mach–Zehnder Modulators in Direct-Detected Optical OFDM Systems,” IEEE Photon. Technol. 21(2), 103–105 (2009).
[CrossRef]

Earnshaw, M.

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

Ellis, A.

Feng, K.

W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Compensation for I/Q Imbalances and Bias Deviation of the Mach–Zehnder Modulators in Direct-Detected Optical OFDM Systems,” IEEE Photon. Technol. 21(2), 103–105 (2009).
[CrossRef]

Forghieri, F.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF,” IEEE Photon. Technol. 22(19), 1419–1421 (2010).
[CrossRef]

Gavioli, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF,” IEEE Photon. Technol. 22(19), 1419–1421 (2010).
[CrossRef]

Gill, D.

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

Gomez, L.

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

Gunning, F.

Healy, T.

Huang, M.

J. Yu, X. Zhou, and M. Huang, “High-Speed PDM-RZ-8QAM DWDM Transmission (160 × 114 Gb/s) Over 640 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. 21(18), 1299–1301 (2009).
[CrossRef]

Klemens, F.

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

Li, J.

Li, X.

Lingle, R.

B. Zhu, X. Liu, S. Chandrasekhar, D. Peckham, and R. Lingle, “Ultra-Long-Haul Transmission of 1.2-Tb/s Multicarrier No-Guard-Interval CO-OFDM Superchannel Using Ultra-Large-Area Fiber,” IEEE Photon. Technol. 22(11), 826–828 (2010).
[CrossRef]

Liu, X.

B. Zhu, X. Liu, S. Chandrasekhar, D. Peckham, and R. Lingle, “Ultra-Long-Haul Transmission of 1.2-Tb/s Multicarrier No-Guard-Interval CO-OFDM Superchannel Using Ultra-Large-Area Fiber,” IEEE Photon. Technol. 22(11), 826–828 (2010).
[CrossRef]

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
[CrossRef] [PubMed]

Ma, Y.

Peckham, D.

B. Zhu, X. Liu, S. Chandrasekhar, D. Peckham, and R. Lingle, “Ultra-Long-Haul Transmission of 1.2-Tb/s Multicarrier No-Guard-Interval CO-OFDM Superchannel Using Ultra-Large-Area Fiber,” IEEE Photon. Technol. 22(11), 826–828 (2010).
[CrossRef]

Peng, W.

W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Compensation for I/Q Imbalances and Bias Deviation of the Mach–Zehnder Modulators in Direct-Detected Optical OFDM Systems,” IEEE Photon. Technol. 21(2), 103–105 (2009).
[CrossRef]

Poggiolini, P.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF,” IEEE Photon. Technol. 22(19), 1419–1421 (2010).
[CrossRef]

Savory, S.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF,” IEEE Photon. Technol. 22(19), 1419–1421 (2010).
[CrossRef]

Shieh, W.

Tang, Y.

Tian, F.

Tkach, R.

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

Torrengo, E.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF,” IEEE Photon. Technol. 22(19), 1419–1421 (2010).
[CrossRef]

Willner, A.

W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Compensation for I/Q Imbalances and Bias Deviation of the Mach–Zehnder Modulators in Direct-Detected Optical OFDM Systems,” IEEE Photon. Technol. 21(2), 103–105 (2009).
[CrossRef]

Wu, X.

W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Compensation for I/Q Imbalances and Bias Deviation of the Mach–Zehnder Modulators in Direct-Detected Optical OFDM Systems,” IEEE Photon. Technol. 21(2), 103–105 (2009).
[CrossRef]

Xi, L.

Yang, Q.

Yu, J.

J. Yu, X. Zhou, and M. Huang, “High-Speed PDM-RZ-8QAM DWDM Transmission (160 × 114 Gb/s) Over 640 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. 21(18), 1299–1301 (2009).
[CrossRef]

Zhang, B.

W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Compensation for I/Q Imbalances and Bias Deviation of the Mach–Zehnder Modulators in Direct-Detected Optical OFDM Systems,” IEEE Photon. Technol. 21(2), 103–105 (2009).
[CrossRef]

Zhang, X.

Zhou, X.

J. Yu, X. Zhou, and M. Huang, “High-Speed PDM-RZ-8QAM DWDM Transmission (160 × 114 Gb/s) Over 640 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. 21(18), 1299–1301 (2009).
[CrossRef]

Zhu, B.

B. Zhu, X. Liu, S. Chandrasekhar, D. Peckham, and R. Lingle, “Ultra-Long-Haul Transmission of 1.2-Tb/s Multicarrier No-Guard-Interval CO-OFDM Superchannel Using Ultra-Large-Area Fiber,” IEEE Photon. Technol. 22(11), 826–828 (2010).
[CrossRef]

IEEE Photon. J. (1)

X. Liu, D. Gill, S. Chandrasekhar, L. Buhl, M. Earnshaw, M. Cappuzzo, L. Gomez, Y. Chen, F. Klemens, E. Burrows, Y. Chen, and R. Tkach, “Multi-Carrier Coherent Receiver Based on a Shared Optical Hybrid and a Cyclic AWG Array for Terabit/s Optical Transmission,” IEEE Photon. J. 2(3), 330–337 (2010).
[CrossRef]

IEEE Photon. Technol. (4)

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF,” IEEE Photon. Technol. 22(19), 1419–1421 (2010).
[CrossRef]

B. Zhu, X. Liu, S. Chandrasekhar, D. Peckham, and R. Lingle, “Ultra-Long-Haul Transmission of 1.2-Tb/s Multicarrier No-Guard-Interval CO-OFDM Superchannel Using Ultra-Large-Area Fiber,” IEEE Photon. Technol. 22(11), 826–828 (2010).
[CrossRef]

W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Compensation for I/Q Imbalances and Bias Deviation of the Mach–Zehnder Modulators in Direct-Detected Optical OFDM Systems,” IEEE Photon. Technol. 21(2), 103–105 (2009).
[CrossRef]

J. Yu, X. Zhou, and M. Huang, “High-Speed PDM-RZ-8QAM DWDM Transmission (160 × 114 Gb/s) Over 640 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. 21(18), 1299–1301 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (4)

Other (11)

X. Liu, S. Chandrasekhar, B. Zhu, D. Peckham, “Efficient Digital Coherent Detection of A 1.2-Tb/s 24-Carrier No-Guard-Interval CO-OFDM Signal by Simultaneously Detecting Multiple Carriers Per Sampling,” OFC. OWO2, (2010).

S. Chen, Y. Ma, W. Shieh, “110-Gb/s Multi-band Real-time Coherent Optical OFDM Reception after 600-km Transmission over SSMF Fiber”. OFC. OMS2, (2010).

S. Chandrasekhar, X. Liu, “Terabit superchannels for high spectral efficiency transmission,” ECOC. Tu.3.C.5, (2010).

Y. Ma, Q. Yang, Y. Tang, S. Chen, W. Shieh, “1-Tb/s per Channel Coherent Optical OFDM Transmission with Subwavelength Bandwidth Access,” OFC. PDPC1, (2009).

R. Maher, P. Anandarajah, S. Ibrahim, L. Barry, A. Ellis, P. Perry, R. Phelan, B. Kelly, and J. Gorman, “Low Cost Comb Source in a Coherent Wavelength Division Multiplexed System” ECOC. P3.07, (2010).

X. Zhou, J. Yu, M. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, H. Matthew, and S. Mishra, “32Tb/s (320 × 114Gb/s) PDM-RZ-8QAM transmission over 580km of SMF-28 ultra-low-loss fiber”. OFC. PDPB4, (2009).

A. Ellis, F. Gunning, B. Cuenot, T. Healy, E. Pincemin, “Towards 1TbE using coherent WDM,” OECC. WeA-1, (2008).

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, M. Belmonte, F. Forghieri, C. Muzio, S. Piciaccia, A. Brinciotti, A. Porta, C. Lezzi, S. Savory, S. Abrate, “Investigation of the Impact of Ultra-Narrow Carrier Spacing on the Transmission of a 10-Carrier 1Tb/s Superchannel,” OFC. OThD3, (2010).

R. Dischler, F. Buchali, “Transmission of 1.2 Tb/s Continuous Waveband PDM-OFDM-FDM signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” OFC. PDPC2, (2009).

H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, S. Kamei, “13.5-Tb/s (135 × 111-Gb/s/ch) No-Guard-Interval Coherent OFDM Transmission over 6,248 km using SNR Maximized Second-order DRA in the Extended L-band,” OFC. PDPB5, (2009).

S. Chandrasekhar, X. Liu, B. Zhu, D. Peckham, “Transmission of a 1.2-Tb/s 24-Carrier No-Guard-Interval Coherent OFDM Superchannel over 7200-km of Ultra-Large-Area Fiber,” ECOC. PD2.6, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The schematic of (a) SSB modulator based RFS and (b) the optical I/Q modulator.

Fig. 2
Fig. 2

The impact of intrinsic imperfection on the output of transfer function with (a) ΔV I /V πI = ΔV Q /V πQ = 0; (b) ΔV I /V πI = ΔV Q /V πQ = −0.1; (c) ΔV I /V πI = −0.1, ΔV Q /V πQ = −0.3.

Fig. 3
Fig. 3

The impact of ΔV bPM on the output transfer function with different cases.

Fig. 4
Fig. 4

The impact of ΔV bI on the output of transfer function with different cases.

Fig. 5
Fig. 5

The impact of amplitude and phase imbalance of RF drive signals on the output of transfer function.

Fig. 6
Fig. 6

The impact of amplitude and phase imbalance of RF drive signals on the output of transfer function with case 1 ~6 in Fig. 5(a) and (b) respectively.

Fig. 7
Fig. 7

The simulation output of the 50-tone multicarrier output when f 0 is the dominant harmonic. (a) the transfer function output; (b) the 50-tone output.

Fig. 8
Fig. 8

The simulation output of the 50-tone multicarrier output when f -1 is the dominant harmonic. (a) the transfer function output; (b) the 50-tone output.

Fig. 9
Fig. 9

The experiment results under the balanced operation condition for (a) the transfer function output and (b) the 50-tone output.

Fig. 10
Fig. 10

The output spectrum with ∆V bI = :(a) 0.1V; (b) 0.3V; (c) 0.7V; (d) −0.1V; (e) −0.2V; (f) −0.4V.

Fig. 11
Fig. 11

The output spectrum with ∆P m = (a) 0.5dB; (b) 1dB; (c) 1.5dB; (d) −0.5dB; (e) −1dB; (f) −1.5dB.

Fig. 12
Fig. 12

The output spectrum with (a) ∆θ = -π/4; (b) ∆θ = -π/2; (c) ∆θ = π/4; (d) ∆θ = π/2.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

T = 1 4 { [ exp ( j ϕ I 1 ) + exp ( j ϕ I 2 ) ] + ( 1 + δ ) exp ( j ϕ P M ) [ exp ( j ϕ Q 1 ) + exp ( j ϕ Q 2 ) ] } exp ( j ϕ R T )
ϕ I 1 = π 2 [ ( V π I + Δ V b I ) + V p p I cos ( 2 π f m t ) ] V π I ; ϕ I 2 = π 2 [ ( V π I + Δ V b I ) + ( V p p I + Δ V I ) cos ( 2 π f m t ) ] V π I ϕ Q 1 = π 2 [ ( V π Q + Δ V b Q ) + ( V p p I + Δ V m ) sin ( 2 π f m t + Δ θ ) ] V π Q ; ϕ Q 2 = π 2 [ ( V π Q + Δ V b Q ) + ( V p p I + Δ V m + Δ V Q ) sin ( 2 π f m t + Δ θ ) ] V π Q ; ϕ P M = π 2 ( V π P M + Δ V b P M ) V π P M ;
T = { k 0 + [ k 11 cos ( 2 π f m t ) + j k 12 sin ( 2 π f m t ) ] + k 2 cos ( 4 π f m t ) [ k 31 cos ( 6 π f m t ) j k 32 sin ( 6 π f m t ) ] } exp ( j ϕ R T )
k 0 = ( 1 + δ ) [ J 1 ( δ m Q + Δ δ m Q ) J 1 ( Δ δ m Q ) + J 3 ( δ m Q + Δ δ m Q ) J 3 ( Δ δ m Q ) ] j [ J 1 ( δ m I + Δ δ m I ) J 1 ( Δ δ m I ) + J 3 ( δ m I + Δ δ m I ) J 3 ( Δ δ m I ) ] k 11 = [ J 1 ( δ m I + Δ δ m I ) J 0 ( Δ δ m I ) + J 3 ( δ m I + Δ δ m I ) J 2 ( Δ δ m I ) J 1 ( δ m I + Δ δ m I ) J 2 ( Δ δ m I ) ] k 12 = ( 1 + δ ) [ J 1 ( δ m Q + Δ δ m Q ) J 0 ( Δ δ m Q ) + J 3 ( δ m Q + Δ δ m Q ) J 2 ( Δ δ m Q ) J 1 ( δ m Q + Δ δ m Q ) J 2 ( Δ δ m Q ) ] k 2 = j [ J 1 ( δ m I + Δ δ m I ) J 3 ( Δ δ m I ) + J 3 ( δ m I + Δ δ m I ) J 1 ( Δ δ m I ) J 1 ( δ m I + Δ δ m I ) J 1 ( Δ δ m I ) ] ( 1 + δ ) [ J 1 ( δ m Q + Δ δ m Q ) J 1 ( Δ δ m Q ) + J 3 ( δ m Q + Δ δ m Q ) J 1 ( Δ δ m Q ) + J 1 ( δ m Q + Δ δ m Q ) J 3 ( Δ δ m Q ) ] k 31 = [ J 1 ( δ m I + Δ δ m I ) J 2 ( Δ δ m I ) + J 3 ( δ m I + Δ δ m I ) J 0 ( Δ δ m I ) ] k 32 = ( 1 + δ ) [ J 1 ( δ m Q + Δ δ m Q ) J 2 ( Δ δ m Q ) + J 3 ( δ m Q + Δ δ m Q ) J 0 ( Δ δ m Q ) ]
T { k 0 + [ k 11 cos ( 2 π f m t ) + ( j k 12 k 13 ) sin ( 2 π f m t ) ] + k 2 cos ( 4 π f m t ) [ k 31 cos ( 6 π f m t ) ( j k 32 k 33 ) sin ( 6 π f m t ) ] } exp ( j ϕ R T )
k 0 = 1 2 [ sin ( Δ δ b I ) J 0 ( δ m I ) + j exp ( j Δ δ P M ) sin ( Δ δ b Q ) J 0 ( δ m Q ) ] k 11 = cos ( Δ δ b I ) J 1 ( δ m I ) k 12 = cos ( Δ δ P M ) cos ( Δ δ b Q ) J 1 ( δ m Q ) ; k 13 = sin ( Δ δ P M ) cos ( Δ δ b Q ) J 1 ( δ m Q ) k 2 = j exp ( j Δ δ P M ) sin ( Δ δ b Q ) J 2 ( δ m Q ) sin ( Δ δ b I ) J 2 ( δ m I ) k 31 = cos ( Δ δ b I ) J 3 ( δ m I ) k 32 = cos ( Δ δ P M ) cos ( Δ δ b Q ) J 3 ( δ m Q ) ; k 33 = sin ( Δ δ P M ) cos ( Δ δ b Q ) J 1 ( δ m Q )
T { [ J 1 ( δ m ) exp ( 2 π f m t ) J 3 ( δ m ) exp ( 6 π f m t ) ] + j [ k 11 sin ( 2 π f m t ) + k 12 cos ( 2 π f m t ) ] + j [ k 31 sin ( 6 π f m t ) + k 32 cos ( 6 π f m t ) ] } exp ( j ϕ R T )
k 11 = J 1 ( C 1 ) J 0 ( C 2 ) + J 1 ( C 1 ) J 2 ( C 2 ) J 3 ( C 1 ) J 2 ( C 2 ) J 1 ( δ m ) k 12 = J 1 ( C 2 ) J 0 ( C 1 ) + J 1 ( C 2 ) J 2 ( C 1 ) J 3 ( C 2 ) J 2 ( C 1 ) k 31 = J 3 ( C 1 ) J 0 ( C 2 ) J 1 ( C 1 ) J 2 ( C 2 ) J 3 ( δ m ) k 32 = J 1 ( C 2 ) J 2 ( C 1 ) J 3 ( C 2 ) J 0 ( C 1 )
T = [ exp ( j 2 π f m t ) + b exp ( j 2 π n 0 f m t ) ] exp ( j ϕ R T )
E f i n a l ( t ) E i n ( t ) n = 0 N exp ( j 2 π n f m t ) exp ( j n ϕ R T ) + E i n ( t ) n = 1 N C n exp ( j 2 π n f m t ) exp ( j n ϕ R T )
C n = n b exp [ j ( 1 n 0 ) ϕ R T ]            ,                  n < ( N + n 0 )      = ( N + n 0 ) b exp [ j ( 1 n 0 ) ϕ R T ] ,                  n ( N + n 0 )
O S N R O A ( d B ) 58 + P o u t ( d B m ) N F ( d B ) L t o t a l ( d B ) 20 lg N
O S N R c r o s s t a l k ( d B ) 20 lg ( | b | ) 10 lg ( N + n 0 )
O S N R e f f ( d B ) = 10 lg ( 10 O S N R O A 10 + 10 O S N R c r o s s t a l k 10 )

Metrics