Abstract

Abstract: Nano-scale power splitters based on Si hybrid plasmonic waveguides are designed by utilizing the multimode interference (MMI) effect as well as Y-branch structure. A three-dimensional finite-difference time-domain method is used for simulating the light propagation and optimizing the structural parameters. The designed 1×2 50:50 MMI power splitter has a nano-scale size of only 650 nm×530 nm. The designed Y-branch power splitter is also very small, i.e., about 900 nm×600 nm. The fabrication tolerance is also analyzed and it is shown that the tolerance of the waveguide width is much larger than±50 nm. The power splitter has a very broad band of over 500 nm. In order to achieve a variable power splitting ratio, a 2×2 two-mode interference coupler and an asymmetric Y-branch are used and the corresponding power splitting ratio can be tuned in the range of 97.1%:2.9%-1.7%:98.3% and 84%:16%-16%:84%, respectively. Finally a 1×4 power splitter with a device footprint of 1.9 μm×2.6 μm is also presented using cascaded Y-branches.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
    [CrossRef]
  2. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [CrossRef]
  3. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
    [CrossRef] [PubMed]
  4. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005).
    [CrossRef] [PubMed]
  5. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
    [CrossRef]
  6. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  8. L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
    [CrossRef] [PubMed]
  9. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [CrossRef]
  10. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  12. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [CrossRef] [PubMed]
  13. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
    [CrossRef] [PubMed]
  14. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  15. D. X. Dai, L. Yang, and S. L. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26(6), 704–709 (2008).
    [CrossRef]
  16. D. Dai, Y. Shi, and S. He, “Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide,” Appl. Opt. 46(7), 1126–1131 (2007).
    [CrossRef] [PubMed]
  17. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
    [CrossRef]
  18. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
    [CrossRef] [PubMed]
  19. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
    [CrossRef] [PubMed]
  20. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
    [CrossRef] [PubMed]
  21. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and application,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  22. Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007).
    [CrossRef]
  23. B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
    [CrossRef]
  24. S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996).
    [CrossRef]
  25. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
    [CrossRef] [PubMed]
  26. P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  27. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

2010 (4)

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[CrossRef] [PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[CrossRef] [PubMed]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

2009 (4)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
[CrossRef]

B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
[CrossRef]

2008 (3)

S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
[CrossRef] [PubMed]

D. X. Dai, L. Yang, and S. L. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26(6), 704–709 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

2007 (2)

D. Dai, Y. Shi, and S. He, “Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide,” Appl. Opt. 46(7), 1126–1131 (2007).
[CrossRef] [PubMed]

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007).
[CrossRef]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

2005 (4)

L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[CrossRef] [PubMed]

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005).
[CrossRef] [PubMed]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

2004 (4)

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
[CrossRef] [PubMed]

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[CrossRef] [PubMed]

1996 (1)

S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996).
[CrossRef]

1995 (1)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and application,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Aitchison, J. S.

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[CrossRef] [PubMed]

Alam, M. Z.

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
[CrossRef]

Catrysse, P. B.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Dai, D.

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

D. Dai, Y. Shi, and S. He, “Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide,” Appl. Opt. 46(7), 1126–1131 (2007).
[CrossRef] [PubMed]

Dai, D. X.

D. X. Dai, L. Yang, and S. L. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26(6), 704–709 (2008).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Fan, S. H.

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Fang, Q.

S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
[CrossRef] [PubMed]

Freude, W.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
[CrossRef]

Fujii, M.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
[CrossRef]

Fukuda, H.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Goto, T.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
[CrossRef] [PubMed]

Han, Z.

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007).
[CrossRef]

Han, Z. H.

L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[CrossRef] [PubMed]

He, S.

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

D. Dai, Y. Shi, and S. He, “Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide,” Appl. Opt. 46(7), 1126–1131 (2007).
[CrossRef] [PubMed]

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007).
[CrossRef]

He, S. L.

D. X. Dai, L. Yang, and S. L. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26(6), 704–709 (2008).
[CrossRef]

L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[CrossRef] [PubMed]

Hibino, Y.

S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996).
[CrossRef]

Inoue, Y.

S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Katagiri, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Kitoh, T.

S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996).
[CrossRef]

Kobayashi, I.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Kobayashi, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

Kusunoki, F.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

Kwong, D. L.

S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
[CrossRef] [PubMed]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Leuthold, J.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
[CrossRef]

Li, Q.

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Liu, L.

L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[CrossRef] [PubMed]

Lo, G. Q.

S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
[CrossRef] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Meier, J.

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[CrossRef] [PubMed]

Mitsuoka, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Mojahedi, M.

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[CrossRef] [PubMed]

Moriwaki, K.

S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996).
[CrossRef]

Nakano, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pennings, E.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and application,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
[CrossRef] [PubMed]

Qiu, M.

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Selker, M. D.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
[CrossRef]

Shi, Y.

D. Dai, Y. Shi, and S. He, “Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide,” Appl. Opt. 46(7), 1126–1131 (2007).
[CrossRef] [PubMed]

Shin, S.-Y.

B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
[CrossRef]

Shinojima, H.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

Soldano, L.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and application,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Song, J. F.

S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
[CrossRef] [PubMed]

Song, Y.

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Sugiyama, T.

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005).
[CrossRef] [PubMed]

Suzuki, S.

S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996).
[CrossRef]

Takahara, J.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

Tanaka, K.

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005).
[CrossRef] [PubMed]

Tanaka, M.

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005).
[CrossRef] [PubMed]

Tao, S. H.

S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
[CrossRef] [PubMed]

Van, V.

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

Veronis, G.

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wang, B.

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[CrossRef] [PubMed]

Wang, G. P.

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[CrossRef] [PubMed]

Wang, J.

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Wu, M.

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

Yamada, Y.

S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996).
[CrossRef]

Yan, M.

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Yanagisawa, M.

S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996).
[CrossRef]

Yang, B.-K.

B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
[CrossRef]

Yang, L.

D. X. Dai, L. Yang, and S. L. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26(6), 704–709 (2008).
[CrossRef]

Yotsuya, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

Yu, M. B.

S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
[CrossRef] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, D.

B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Zia, R.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
[CrossRef]

Appl. Opt. (1)

D. Dai, Y. Shi, and S. He, “Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide,” Appl. Opt. 46(7), 1126–1131 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Electron. Lett. (1)

S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
[CrossRef]

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
[CrossRef]

J. Lightwave Technol. (2)

D. X. Dai, L. Yang, and S. L. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26(6), 704–709 (2008).
[CrossRef]

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and application,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
[CrossRef]

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007).
[CrossRef]

Opt. Express (8)

S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
[CrossRef] [PubMed]

L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[CrossRef] [PubMed]

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[CrossRef] [PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[CrossRef] [PubMed]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[CrossRef] [PubMed]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The cross section of the present hybrid plasmonic waveguide with a metal cap on a silicon-on-insulator rib with a thin SiO2 interlayer; (b) the calculated field distribution for the major component Ey (x, y) of the quasi-TM fundamental mode of the hybrid plasmonic waveguide.

Fig. 2
Fig. 2

(a) The real part of the effective index and (b) the propagation length for different order hybrid plasmonic modes (colored lines) as a function of the width of the multimode waveguide increase. The dotted line, solid line and dash line represent hSiO2 = 5 nm, 10 nm and 20 nm, respectively.

Fig. 3
Fig. 3

Power propagation in the 1×2 50:50 MMI power splitter based on the multimode hybrid plasmonic waveguide with w MMI = 650 nm and L MMI = 530 nm. The right insets show the fundamental and second order modes of the MMI section; the upper inset shows the output power distribution at the 10 nm-thick SiO2 layer.

Fig. 4
Fig. 4

Transmission of the 1×2 50:50 MMI power splitter as a function of (a) the width of the MMI (L MMI = 530 nm) and (b) wavelength (L MMI = 530 nm and w MMI = 650 nm).

Fig. 6
Fig. 6

(a) The transmission of the 1×2 Y-branch power splitter as the S-bend length increases; (b) The power propagation in the designed 1×2 50:50 Y-branch power splitter with L S-bend = 0.9 μm and D = 600 nm.

Fig. 5
Fig. 5

(a) The transmission and power splitting ratio of the 2×2 MMI power splitter as the MMI length L MMI changes (w MMI = 450 nm). The upper insets show the power propagation for the case of L MMI=0.8μm, 1.2μm, and 1.7μm; (b) the transmission and power splitting ratio of the designed 1.7%:98.3% 2×2 MMI power splitter with L MMI=1.7μm as a function of wavelength.

Fig. 7
Fig. 7

The transmission of the designed 1×2 50:50Y-branch power splitter with L S-bend = 0.9 μm and D = 600 nm as a function of (a) the waveguide width (w=w 1=w 2), and (b) the wavelength.

Fig. 8
Fig. 8

(a) The power splitting ratio of the 1×2 Y-branch power splitter as the S-bend width w 1 increases (w 2=200 nm). The upper insets in Fig. 8.(a) show the power transmission for the case of w 1=50 nm and 200 nm; (b) the power propagation in the 1×4 Y-branch power splitter with L S-bend1 = 1.2 μm and D 1 = 1200 nm, L S-bend2 = 0.9 μm and D 2 = 600 nm. The upper inset in Fig. 8(b) shows the output power distribution at the 10 nm-thick SiO2 layer.

Metrics