Abstract

We present a novel surface plasmon resonance (SPR) configuration based on narrow groove (sub-15 nm) plasmonic nano-gratings such that normally incident radiation can be coupled into surface plasmons without the use of prism-coupling based total internal reflection, as in the classical Kretschmann configuration. This eliminates the angular dependence requirements of SPR-based sensing and allows development of robust miniaturized SPR sensors. Simulations based on Rigorous Coupled Wave Analysis (RCWA) were carried out to numerically calculate the reflectance - from different gold and silver nano-grating structures - as a function of the localized refractive index of the media around the SPR nano-gratings as well as the incident radiation wavelength and angle of incidence. Our calculations indicate substantially higher differential reflectance signals, on localized change of refractive index in the narrow groove plasmonic gratings, as compared to those obtained from conventional SPR-based sensing systems. Furthermore, these calculations allow determination of the optimal nano-grating geometric parameters - i. e. nanoline periodicity, spacing between the nanolines, as well as the height of the nanolines in the nano-grating - for highest sensitivity to localized change of refractive index, as would occur due to binding of a biomolecule target to a functionalized nano-grating surface.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  2. R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [CrossRef]
  3. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, Berlin, 2006).
  4. J. Čtyroký, J. Homola, and M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
    [CrossRef]
  5. R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
    [CrossRef]
  6. P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 541–566 (1997).
    [CrossRef] [PubMed]
  7. M. Malmqvist, “Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol. 5(2), 282–286 (1993).
    [CrossRef] [PubMed]
  8. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York 1983).
  9. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
    [CrossRef] [PubMed]
  10. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
    [CrossRef]
  11. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
    [CrossRef]
  12. A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology 17(10), 2504–2511 (2006).
    [CrossRef] [PubMed]
  13. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4(5), 1143–1212 (1992).
    [CrossRef]
  14. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, (Springer, Berlin, 2006).
  15. T. Vo-Dinh, ““Surface-enhanced Raman spectroscopy using metallic nanostructures,” Trends in Anal. Chem. 17, 557–582 (1998).
    [CrossRef]
  16. M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res. 17(8), 271–277 (1984).
    [CrossRef]
  17. R. K. Chang, and T. E. Furtak, eds., Surface-Enhanced Raman Scattering (Plenum, New York, 1982).
  18. B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73(1), 1–7 (2001).
    [CrossRef] [PubMed]
  19. M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
    [CrossRef] [PubMed]
  20. F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24(7), 2100–2105 (2009).
    [CrossRef]
  21. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
    [CrossRef] [PubMed]
  22. K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14(25), 12419–12431 (2006).
    [CrossRef] [PubMed]
  23. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26(11), 1472–1478 (2008).
    [CrossRef]
  24. L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
    [CrossRef] [PubMed]
  25. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32(21), 3092–3094 (2007).
    [CrossRef] [PubMed]
  26. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub?wavelength hole arrays,” Nature 391, 667-669 (1998).
    [CrossRef]
  27. A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures based on Sub-Wavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8, 942-950 (2008).
    [CrossRef]
  28. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
    [CrossRef]
  29. A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
    [CrossRef] [PubMed]
  30. N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, “Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation,” Lab Chip 9(3), 382–387 (2009).
    [CrossRef] [PubMed]
  31. G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. U.S.A. 107(20), 9043–9048 (2010).
    [CrossRef] [PubMed]
  32. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  33. A. Degiron,“The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
    [CrossRef]
  34. A. Wirgin, and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
    [CrossRef]
  35. W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal Gratings,” Phys. Rev. 59, 12661–12666 (1999).
    [CrossRef]
  36. F. J. García-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
    [CrossRef]
  37. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  38. T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
    [CrossRef]
  39. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66(20), 205408 (2002).
    [CrossRef]
  40. F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
    [CrossRef]
  41. T. Lopez-Rios and A. Wirgin, “Role of waveguide and surface plasmon resonances in surface-enhanced Raman scattering at coldly evaporated metallic films,” Solid State Commun. 52(2), 197–201 (1984).
    [CrossRef]
  42. H. Lochbilher, “Surface Polaritons on gold-wire Gratings,” Phys. Rev. B 50(7), 4795–4801 (1994).
    [CrossRef]
  43. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
    [CrossRef] [PubMed]
  44. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
    [CrossRef]
  45. S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods,” Nano Lett. 10(5), 1722–1727 (2010).
    [CrossRef] [PubMed]
  46. A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” Nanobiotechnol. 3(3-4), 1–8 (2007).
    [CrossRef]
  47. A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
    [CrossRef]
  48. J. B. Leen, P. Hansen, Y.-T. Cheng, and L. Hesselink, “Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane,” Opt. Lett. 33(23), 2827–2829 (2008).
    [CrossRef] [PubMed]
  49. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
    [CrossRef] [PubMed]
  50. M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
    [CrossRef] [PubMed]
  51. M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
    [CrossRef] [PubMed]
  52. T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010).
    [CrossRef]
  53. V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
    [CrossRef]
  54. A. Bezryadin and C. Dekker, “Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters,” J. Vac. Sci. Technol. B 15(4), 793–799 (1997).
    [CrossRef]
  55. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
    [CrossRef] [PubMed]
  56. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983).
    [CrossRef]
  57. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 780–787 (1986).
    [CrossRef]
  58. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005).
    [CrossRef] [PubMed]
  59. A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
    [CrossRef] [PubMed]
  60. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method; 2nd ed. (Artech, Boston, MA, 2000).

2010

L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
[CrossRef] [PubMed]

G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. U.S.A. 107(20), 9043–9048 (2010).
[CrossRef] [PubMed]

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods,” Nano Lett. 10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010).
[CrossRef]

2009

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[CrossRef] [PubMed]

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
[CrossRef] [PubMed]

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, “Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation,” Lab Chip 9(3), 382–387 (2009).
[CrossRef] [PubMed]

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24(7), 2100–2105 (2009).
[CrossRef]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

2008

M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
[CrossRef] [PubMed]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures based on Sub-Wavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8, 942-950 (2008).
[CrossRef]

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

J. B. Leen, P. Hansen, Y.-T. Cheng, and L. Hesselink, “Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane,” Opt. Lett. 33(23), 2827–2829 (2008).
[CrossRef] [PubMed]

2007

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[CrossRef] [PubMed]

A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” Nanobiotechnol. 3(3-4), 1–8 (2007).
[CrossRef]

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32(21), 3092–3094 (2007).
[CrossRef] [PubMed]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

2006

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14(25), 12419–12431 (2006).
[CrossRef] [PubMed]

A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology 17(10), 2504–2511 (2006).
[CrossRef] [PubMed]

2005

A. Degiron,“The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005).
[CrossRef] [PubMed]

2004

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

2003

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[CrossRef]

2002

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

F. J. García-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66(20), 205408 (2002).
[CrossRef]

2001

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73(1), 1–7 (2001).
[CrossRef] [PubMed]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal Gratings,” Phys. Rev. 59, 12661–12666 (1999).
[CrossRef]

1998

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub?wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

T. Vo-Dinh, ““Surface-enhanced Raman spectroscopy using metallic nanostructures,” Trends in Anal. Chem. 17, 557–582 (1998).
[CrossRef]

1997

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 541–566 (1997).
[CrossRef] [PubMed]

J. Čtyroký, J. Homola, and M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
[CrossRef]

A. Bezryadin and C. Dekker, “Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters,” J. Vac. Sci. Technol. B 15(4), 793–799 (1997).
[CrossRef]

1994

H. Lochbilher, “Surface Polaritons on gold-wire Gratings,” Phys. Rev. B 50(7), 4795–4801 (1994).
[CrossRef]

1993

M. Malmqvist, “Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol. 5(2), 282–286 (1993).
[CrossRef] [PubMed]

R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

1992

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4(5), 1143–1212 (1992).
[CrossRef]

1986

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 780–787 (1986).
[CrossRef]

1984

M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res. 17(8), 271–277 (1984).
[CrossRef]

T. Lopez-Rios and A. Wirgin, “Role of waveguide and surface plasmon resonances in surface-enhanced Raman scattering at coldly evaporated metallic films,” Solid State Commun. 52(2), 197–201 (1984).
[CrossRef]

A. Wirgin, and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
[CrossRef]

A. Wirgin, and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
[CrossRef]

1983

M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983).
[CrossRef]

Lopez-Rios, T.

A. Wirgin, and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
[CrossRef]

Acimovic, S. S.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Akemann, W.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4(5), 1143–1212 (1992).
[CrossRef]

Auzelyte, V.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Banholzer, M. J.

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[CrossRef] [PubMed]

Bantz, K. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Bardin, F.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24(7), 2100–2105 (2009).
[CrossRef]

M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
[CrossRef] [PubMed]

Bellemain, A.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24(7), 2100–2105 (2009).
[CrossRef]

Bezryadin, A.

A. Bezryadin and C. Dekker, “Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters,” J. Vac. Sci. Technol. B 15(4), 793–799 (1997).
[CrossRef]

Bolduc, O. R.

L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
[CrossRef] [PubMed]

Brolo, A. G.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Brynda, E.

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

Bustarret, E.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[CrossRef]

Byun, K. M.

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005).
[CrossRef] [PubMed]

Canva, M.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24(7), 2100–2105 (2009).
[CrossRef]

M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
[CrossRef] [PubMed]

Chang, S. H.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods,” Nano Lett. 10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

Cheng, Y.-T.

J. B. Leen, P. Hansen, Y.-T. Cheng, and L. Hesselink, “Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane,” Opt. Lett. 33(23), 2827–2829 (2008).
[CrossRef] [PubMed]

Corn, R. M.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73(1), 1–7 (2001).
[CrossRef] [PubMed]

Ctyroký, J.

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

J. Čtyroký, J. Homola, and M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
[CrossRef]

Cui, B.

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32(21), 3092–3094 (2007).
[CrossRef] [PubMed]

Cui, X.

G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. U.S.A. 107(20), 9043–9048 (2010).
[CrossRef] [PubMed]

Dais, C.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

David, C.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

de Lange, V.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

De Leebeeck, A.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Dechelette, A.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[CrossRef]

Degiron, A.

A. Degiron,“The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

Dekker, C.

A. Bezryadin and C. Dekker, “Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters,” J. Vac. Sci. Technol. B 15(4), 793–799 (1997).
[CrossRef]

Dhawan, A.

A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
[CrossRef] [PubMed]

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures based on Sub-Wavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8, 942-950 (2008).
[CrossRef]

A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” Nanobiotechnol. 3(3-4), 1–8 (2007).
[CrossRef]

A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology 17(10), 2504–2511 (2006).
[CrossRef] [PubMed]

Drndic, M.

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub?wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Farquet, P.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Fischbein, M. D.

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[CrossRef] [PubMed]

Fournier, T.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[CrossRef]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Futamata, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[CrossRef]

Gates, B. D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Gaylord, T. K.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 780–787 (1986).
[CrossRef]

M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983).
[CrossRef]

Gerhold, M. D.

A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
[CrossRef] [PubMed]

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures based on Sub-Wavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8, 942-950 (2008).
[CrossRef]

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” Nanobiotechnol. 3(3-4), 1–8 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub?wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Gibbs, M. R. J.

T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010).
[CrossRef]

Gleeson, J.

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

Gnanavel, T.

T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010).
[CrossRef]

González, M. U.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Goodman, R. M.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73(1), 1–7 (2001).
[CrossRef] [PubMed]

Gordon, R.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Grabhorn, H.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4(5), 1143–1212 (1992).
[CrossRef]

Grimsrud, T. E.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73(1), 1–7 (2001).
[CrossRef] [PubMed]

Grützmacher, D.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

Hansen, P.

J. B. Leen, P. Hansen, Y.-T. Cheng, and L. Hesselink, “Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane,” Opt. Lett. 33(23), 2827–2829 (2008).
[CrossRef] [PubMed]

Haynes, C. L.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Hesselink, L.

J. B. Leen, P. Hansen, Y.-T. Cheng, and L. Hesselink, “Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane,” Opt. Lett. 33(23), 2827–2829 (2008).
[CrossRef] [PubMed]

Heyderman, L. J.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

J. Čtyroký, J. Homola, and M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
[CrossRef]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66(20), 205408 (2002).
[CrossRef]

Im, H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, “Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation,” Lab Chip 9(3), 382–387 (2009).
[CrossRef] [PubMed]

Inkson, B. J.

T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010).
[CrossRef]

Ishikawa, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Kerker, M.

M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res. 17(8), 271–277 (1984).
[CrossRef]

Kim, D.

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14(25), 12419–12431 (2006).
[CrossRef] [PubMed]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005).
[CrossRef] [PubMed]

Kim, K.

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14(25), 12419–12431 (2006).
[CrossRef] [PubMed]

Kim, S. J.

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005).
[CrossRef] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Kreuzer, M. P.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Kumar, L. K. S.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Lakhdar, Z. B.

M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
[CrossRef] [PubMed]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Lecaruyer, P.

M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
[CrossRef] [PubMed]

Leen, J. B.

J. B. Leen, P. Hansen, Y.-T. Cheng, and L. Hesselink, “Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane,” Opt. Lett. 33(23), 2827–2829 (2008).
[CrossRef] [PubMed]

Leonard, D. N.

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

Lesuffleur, A.

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, “Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation,” Lab Chip 9(3), 382–387 (2009).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub?wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Li, S.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods,” Nano Lett. 10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

Liles, M. R.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73(1), 1–7 (2001).
[CrossRef] [PubMed]

Lindquist, N. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, “Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation,” Lab Chip 9(3), 382–387 (2009).
[CrossRef] [PubMed]

Live, L. S.

L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
[CrossRef] [PubMed]

Lochbilher, H.

H. Lochbilher, “Surface Polaritons on gold-wire Gratings,” Phys. Rev. B 50(7), 4795–4801 (1994).
[CrossRef]

Lopez-Rios, T.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[CrossRef]

T. Lopez-Rios and A. Wirgin, “Role of waveguide and surface plasmon resonances in surface-enhanced Raman scattering at coldly evaporated metallic films,” Solid State Commun. 52(2), 197–201 (1984).
[CrossRef]

López-Rios, T.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[CrossRef]

Luo, F.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Malic, L.

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32(21), 3092–3094 (2007).
[CrossRef] [PubMed]

Malmqvist, M.

M. Malmqvist, “Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol. 5(2), 282–286 (1993).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. García-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

Maruyama, Y.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[CrossRef]

Masson, J.-F.

L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
[CrossRef] [PubMed]

Mendoza, D.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[CrossRef]

Millstone, J. E.

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[CrossRef] [PubMed]

Mirkin, C. A.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods,” Nano Lett. 10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[CrossRef] [PubMed]

Möbus, G.

T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010).
[CrossRef]

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Moharam, M. G.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 780–787 (1986).
[CrossRef]

M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983).
[CrossRef]

Mrozek, I.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4(5), 1143–1212 (1992).
[CrossRef]

Muth, J. F.

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures based on Sub-Wavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8, 942-950 (2008).
[CrossRef]

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology 17(10), 2504–2511 (2006).
[CrossRef] [PubMed]

Nakkach, M.

M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
[CrossRef] [PubMed]

Nelson, B. P.

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73(1), 1–7 (2001).
[CrossRef] [PubMed]

Norton, S. J.

A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
[CrossRef] [PubMed]

Oh, S.-H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, “Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation,” Lab Chip 9(3), 382–387 (2009).
[CrossRef] [PubMed]

Olliges, S.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Osberg, K. D.

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[CrossRef] [PubMed]

Otto, A.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4(5), 1143–1212 (1992).
[CrossRef]

Padeste, C.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Pannetier, B.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[CrossRef]

Pedano, M. L.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods,” Nano Lett. 10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Peng, Y.

T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010).
[CrossRef]

Piliarik, M.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Preist, T. W.

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal Gratings,” Phys. Rev. 59, 12661–12666 (1999).
[CrossRef]

Qin, L.

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[CrossRef] [PubMed]

Quidant, R.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Roger, G.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24(7), 2100–2105 (2009).
[CrossRef]

Russell, P. E.

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

Ryan, D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Saghi, Z.

T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010).
[CrossRef]

Sahoo, P. K.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Sakly, J.

M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66(20), 205408 (2002).
[CrossRef]

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal Gratings,” Phys. Rev. 59, 12661–12666 (1999).
[CrossRef]

Sanchez-Dehesa, J.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[CrossRef]

Sánchez-Dehesa, J.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[CrossRef]

Schatz, G. C.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods,” Nano Lett. 10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

Schuck, P.

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 541–566 (1997).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Schultz, S.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Shuler, M. L.

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

Sinton, D.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Skalský, M.

J. Čtyroký, J. Homola, and M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
[CrossRef]

Slavi´k, R.

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Solak, H. H.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Stewart, M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Tabrizian, M.

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32(21), 3092–3094 (2007).
[CrossRef] [PubMed]

Tan, W. C.

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal Gratings,” Phys. Rev. 59, 12661–12666 (1999).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub?wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Thomson, T.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Turchanin, A.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

Van Duyne, R. P.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

Veres, T.

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32(21), 3092–3094 (2007).
[CrossRef] [PubMed]

Vo-Dinh, T.

A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
[CrossRef] [PubMed]

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” Nanobiotechnol. 3(3-4), 1–8 (2007).
[CrossRef]

T. Vo-Dinh, ““Surface-enhanced Raman spectroscopy using metallic nanostructures,” Trends in Anal. Chem. 17, 557–582 (1998).
[CrossRef]

Wanstall, N. P.

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal Gratings,” Phys. Rev. 59, 12661–12666 (1999).
[CrossRef]

Whitesides, G. M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Willson, C. G.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Wirgin, A.

A. Wirgin, and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
[CrossRef]

T. Lopez-Rios and A. Wirgin, “Role of waveguide and surface plasmon resonances in surface-enhanced Raman scattering at coldly evaporated metallic films,” Solid State Commun. 52(2), 197–201 (1984).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub?wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Xu, Q.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Yajid, M. A. M.

T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010).
[CrossRef]

Yang, C.

G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. U.S.A. 107(20), 9043–9048 (2010).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Yoon, S. J.

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14(25), 12419–12431 (2006).
[CrossRef] [PubMed]

Zheng, G.

G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. U.S.A. 107(20), 9043–9048 (2010).
[CrossRef] [PubMed]

Acc. Chem. Res.

M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res. 17(8), 271–277 (1984).
[CrossRef]

ACS Nano

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Anal. Chem.

L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010).
[CrossRef] [PubMed]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73(1), 1–7 (2001).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct.

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 541–566 (1997).
[CrossRef] [PubMed]

Appl. Opt.

M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
[CrossRef] [PubMed]

Biosens. Bioelectron.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24(7), 2100–2105 (2009).
[CrossRef]

Chem. Rev.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[CrossRef] [PubMed]

Curr. Opin. Immunol.

M. Malmqvist, “Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol. 5(2), 282–286 (1993).
[CrossRef] [PubMed]

Electron. Lett.

J. Čtyroký, J. Homola, and M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
[CrossRef]

IEEE J. Lightwave Technol.

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

IEEE Sens. J.

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures based on Sub-Wavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8, 942-950 (2008).
[CrossRef]

J. Am. Chem. Soc.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[CrossRef]

J. Micro/Nanolith.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. Degiron,“The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

J. Opt. Soc. Am.

M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983).
[CrossRef]

J. Opt. Soc. Am. A

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 780–787 (1986).
[CrossRef]

J. Phys. Chem. B

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[CrossRef]

J. Phys. Condens. Matter

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4(5), 1143–1212 (1992).
[CrossRef]

J. Phys.: Conference Series

T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010).
[CrossRef]

J. Vac. Sci. Technol. B

A. Bezryadin and C. Dekker, “Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters,” J. Vac. Sci. Technol. B 15(4), 793–799 (1997).
[CrossRef]

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

Lab Chip

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, “Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation,” Lab Chip 9(3), 382–387 (2009).
[CrossRef] [PubMed]

Langmuir

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Nano Lett.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods,” Nano Lett. 10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

Nanobiotechnol.

A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” Nanobiotechnol. 3(3-4), 1–8 (2007).
[CrossRef]

Nanotechnology

A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology 17(10), 2504–2511 (2006).
[CrossRef] [PubMed]

Nat. Protoc.

M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009).
[CrossRef] [PubMed]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub?wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Opt. Commun.

A. Wirgin, and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984).
[CrossRef]

Opt. Express

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14(25), 12419–12431 (2006).
[CrossRef] [PubMed]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005).
[CrossRef] [PubMed]

A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
[CrossRef] [PubMed]

Opt. Lett.

J. B. Leen, P. Hansen, Y.-T. Cheng, and L. Hesselink, “Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane,” Opt. Lett. 33(23), 2827–2829 (2008).
[CrossRef] [PubMed]

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32(21), 3092–3094 (2007).
[CrossRef] [PubMed]

Phys. Rev.

W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal Gratings,” Phys. Rev. 59, 12661–12666 (1999).
[CrossRef]

Phys. Rev. B

F. J. García-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66(20), 205408 (2002).
[CrossRef]

H. Lochbilher, “Surface Polaritons on gold-wire Gratings,” Phys. Rev. B 50(7), 4795–4801 (1994).
[CrossRef]

Phys. Rev. Lett.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. U.S.A. 107(20), 9043–9048 (2010).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Solid State Commun.

T. Lopez-Rios and A. Wirgin, “Role of waveguide and surface plasmon resonances in surface-enhanced Raman scattering at coldly evaporated metallic films,” Solid State Commun. 52(2), 197–201 (1984).
[CrossRef]

Trends in Anal. Chem.

T. Vo-Dinh, ““Surface-enhanced Raman spectroscopy using metallic nanostructures,” Trends in Anal. Chem. 17, 557–582 (1998).
[CrossRef]

Other

R. K. Chang, and T. E. Furtak, eds., Surface-Enhanced Raman Scattering (Plenum, New York, 1982).

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, Berlin, 2006).

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York 1983).

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, (Springer, Berlin, 2006).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method; 2nd ed. (Artech, Boston, MA, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Schematic showing Kretschmann configuration conventionally employed for coupling of the incident radiation to surface plasmons and (b) Schematic showing narrow groove plasmonic (gold or silver) nano-grating structure illustrating the important dimensions and parameters. The incident and reflected radiation are indicated by symbols ‘I’ and ‘R’, respectively. While ‘M’ indicates a plasmonic film such as a gold or silver film, ‘L’ indicates a thin layer of molecules on the surface of the metallic film. ‘(P)’ and ‘(H)’ shown in the above figure indicate the periodicity and height of the nanolines in the nano-gratings and ‘(W)’ indicates the spacing between adjacent nanolines in the nano-grating.

Fig. 2
Fig. 2

Rigorous coupled wave analysis (RCWA) calculations showing reflectance curves with localized refractive index around the film being 1.33 in green and 1.53 (n=1.53 for 1 nm above the metallic film, the remaining region having n=1.33) in blue for a planar metallic film (50 nm plasmonics-active metal and 5 nm Ti) deposited on a BK7 glass prism employed for SPR measurements. Reflectance and differential reflectance plots for angular interrogation are provided, the plasmonic metal being (a) Gold and (b) Silver. Reflectance and differential reflectance plots are provided for spectral interrogation, the plasmonic metal being (c) Gold and (d) Silver. RCWA calculations showing reflectance curve (differential reflectance in red, reflectance curves with localized refractive index around the grating n=1.33 in green and with n = 1.53 in blue) for a narrow groove metallic nano-grating (with 100 nm height and periodicity as well as 7 nm groove width) for a 1nm binding of target (refractive index = 1.53) on the surface of the metallic film for (e) Gold nano-grating, and (f) Silver nano-grating.

Fig. 3
Fig. 3

RCWA calculations showing the effect of nano-grating groove width ‘W’ on the plasmon resonance dips in the reflectance spectra for narrow groove metallic nano-gratings: (a) Gold nano-grating, and (b) Silver nano-grating. The nano-grating height ‘H’ and periodicity ‘P’ are 100 nm and the refractive index of the medium surrounding the nano-grating was 1.33.

Fig. 4
Fig. 4

Effect of Periodicity ‘P’ of gold narrow groove plasmonic nano-grating structure on reflection spectra from the nano-gratings for different filling factors ‘FF’ of the nano-gratings: (a) 0.05, (b) 0.06, (c) 0.07, (d) 0.08, (e) 0.10, (f) 0.14, (g) 0.16, and (h) 0.2. In the calculations, the localized refractive index around the gold nano-gratings was taken as 1.53 (n=1.53 for 1 nm above the metallic film, the remaining region having n=1.33) and height ‘H’ was 100 nm.

Fig. 5
Fig. 5

Effect of Periodicity ‘P’ of silver narrow groove plasmonic nano-grating structure on reflection spectra from the nano-gratings for different filling factors ‘FF’ of the nano-gratings: (a) 0.05, (b) 0.06, (c) 0.07, (d) 0.08, (e) 0.10, (f) 0.14, (g) 0.2, and (h) 0.3. In the calculations, the localized refractive index around the silver nano-gratings was taken as 1.53 (n=1.53 for 1 nm above the metallic film, the remaining region having n=1.33) and height ‘H’ was 100 nm.

Fig. 6
Fig. 6

(a-d) RCWA calculations showing reflectance curves (differential reflectance in blue, reflectance curves with localized refractive index around the grating n = 1.33 in green and with n = 1.53 in red) for a narrow groove gold nano-grating - with 100 nm periodicity and 7 nm groove width - for a 1 nm binding of target (refractive index = 1.53) on the surface of the metallic film. The effect of nano-grating height ‘H’ on the reflection spectra is shown for the following values of ‘H’: (a) 50 nm, (b) 150 nm, (c) 200 nm, (d) 250 nm. (e) The effect of nano-grating height ‘H’ on the amplitude of the differential reflectance (peak maxima – peak minima) for different plasmon modes coupling into the narrow groove gold nano-gratings. The dashed red line provides the maximum value of the amplitude of differential reflectance for a planar gold film evaluated using the Kretschmann configuration and wavelength interrogation, while the dashed light green line provides the maximum value of the amplitude of differential reflectance for a planar gold film evaluated using the Kretschmann configuration when the interrogation wavelength is less than 800 nm. The dashed dark green line provides the maximum value of the amplitude of differential reflectance for a planar gold film - evaluated using Kretschmann configuration and employing wavelength interrogation - that is normalized such that the planar gold film would have the equivalent surface area as would be present in gold nano-gratings of height ‘H’, while the dashed blue line provides the normalized value of the maximum amplitude of differential reflectance when the wavelength of interrogation is less than 800 nm.

Fig. 7
Fig. 7

(a-d) RCWA calculations showing reflectance curves (differential reflectance in blue, reflectance curves with localized refractive index around the grating n = 1.33 in green and with n = 1.53 in red) for a narrow groove silver nano-grating - with 100 nm periodicity and 7 nm groove width - for a 1 nm binding of target (refractive index = 1.53) on the surface of the metallic film. The effect of nano-grating height ‘H’ on the reflection spectra is shown for the following values of ‘H’: (a) 50 nm, (b) 150 nm, (c) 200 nm, (d) 250 nm. (e) The effect of nano-grating height ‘H’ on the amplitude of the differential reflectance (peak maxima – peak minima) for different plasmon modes coupling into the narrow groove silver nano-gratings. The dashed red line provides the maximum value of the amplitude of differential reflectance for a planar silver film evaluated using the Kretschmann configuration and wavelength interrogation, while the dashed light green line provides the maximum value of the amplitude of differential reflectance for a planar silver film evaluated using the Kretschmann configuration when the interrogation wavelength is less than 800 nm. The dashed dark green line provides the maximum value of the amplitude of differential reflectance for a planar silver film - evaluated using Kretschmann configuration and employing wavelength interrogation - that is normalized such that the planar silver film would have the equivalent surface area as would be present in silver nano-gratings of height ‘H’, while the dashed blue line provides the normalized value of the maximum amplitude of differential reflectance when the wavelength of interrogation is less than 800 nm.

Fig. 8
Fig. 8

(a) RCWA calculations showing the effect of angle of incidence on reflectance - the wavelength of the incident radiation being the plasmon resonance wavelength for the gold (761 nm) and silver (702 nm) nanolines grating structures. The nano-grating height ‘H’ and periodicity ‘P’ are 100 nm, the spacing ‘W’ between the nanolines is 7 nm, and the refractive index of the medium surrounding the nano-grating is 1.33. (b) RCWA calculations showing the reflectance spectra from nanolines grating structures of different materials, for normally incident radiation on these nano-gratings. For all nano-grating materials, the nano-grating height ‘H’ and periodicity ‘P’ are 100 nm, the spacing ‘W’ between the nanolines is 7 nm, and the refractive index of the medium surrounding the nano-grating is 1.33.

Fig. 9
Fig. 9

FDTD Simulations showing EM field enhancement (at plasmon resonance wavelengths) in the narrow gaps between neighboring nanolines of a nano- gratings having 100 nm Periodicity ‘P’ and Height ‘H’, and 7 nm gap between adjacent nanolines for: (a) Silver and (b) Gold nano-gratings. In these calculations, the direction of the TM radiation incident on the nano-gratings is the ‘Z’ direction.

Fig. 10
Fig. 10

Reflectance spectra obtained from RCWA simulations showing the effect of varying the bulk refractive ‘n2 ’ on the plasmon resonance wavelength peak for (a) Au nano-grating and (b) Ag nano-grating, the periodicity ‘P’ and height ‘H’ being 100 nm and the spacing between the nanolines ‘W’ being 7 nm.

Fig. 11
Fig. 11

RCWA calculations showing differential reflectance curves for a change of the localized refractive index - 1 nm above the metallic film surface of a narrow groove gold nano-grating - from n = 1.33 to n = 1.53 upon binding of a 1nm thick target having a refractive index of 1.53 on the surface of the metallic film. The gold nano-grating had a 100 nm periodicity and the effect of nano-grating groove width ‘W’ on the differential reflectance spectra is shown for the following values of periodicity ‘P’: (a) 50 nm, (b) 100 nm, (c) 150 nm, (d) 200 nm.

Fig. 12
Fig. 12

RCWA calculations showing the effect of groove width ‘W’ on the amplitude of the differential reflectance (peak maxima – peak minima) signals obtained from gold nano-gratings, when the plasmon resonance related dips in the reflectance spectra (before and after the localized refractive index change) - as well as the maxima and the minima in the differential reflectance curves - are considered (a) for wavelengths less than 1600 nm and (b) for wavelengths less than 800 nm. The gold nano-grating had a 100 nm periodicity and the effect of nano-grating groove width ‘W’ on the differential reflectance amplitude is plotted for different values of periodicity ‘P’: 50 nm (continuous light green line), 100 nm (continuous red line), 150 nm (continuous dark green line), and 200 nm (continuous blue line). The differential reflectance curves were obtained for a change of the localized refractive index - 1 nm above the metallic film surface of a narrow groove gold nano-grating - from n = 1.33 to n = 1.53 upon binding of a 1nm thick target having a refractive index of 1.53 on the surface of the metallic film. The dashed black line provides the baseline value of the amplitude of differential reflectance for a planar gold film evaluated using the Kretschmann configuration and employing wavelength interrogation. The other dashed lines provide the baseline values of the amplitude of differential reflectance for a planar gold film - evaluated using Kretschmann configuration and employing wavelength interrogation - that are normalized such that the planar gold film would have equivalent surface area as would be present in gold nano-gratings of groove periodicity ‘P’ when the value of ‘P’ is 50 nm (dashed light green line), 100 nm (dashed red line), 150 nm (dashed dark green line), and 200 nm (dashed blue line).

Fig. 13
Fig. 13

RCWA calculations showing differential reflectance curves for a change of the localized refractive index - 1 nm above the metallic film surface of a narrow groove silver nano-grating - from n = 1.33 to n = 1.53 upon binding of a 1 nm thick target having a refractive index of 1.53 on the surface of the metallic film. The silver nano-grating had a 100 nm periodicity and the effect of nano-grating groove width ‘W’ on the differential reflectance spectra is shown for the following values of periodicity ‘P’: (a) 50 nm, (b) 100 nm, (c) 150 nm, (d) 200 nm.

Fig. 14
Fig. 14

RCWA calculations showing the effect of groove width ‘W’ on the amplitude of the differential reflectance (peak maxima – peak minima) signals obtained from silver nano-gratings, when the plasmon resonance related dips in the reflectance spectra (before and after the localized refractive index change) - as well as the maxima and the minima in the differential reflectance curves - are considered (a) for wavelengths less than 1600 nm and (b) for wavelengths less than 800 nm. The silver nano-grating had a 100 nm periodicity and the effect of nano-grating groove width ‘W’ on the differential reflectance amplitude is plotted for different values of periodicity ‘P’: 50 nm (continuous light green line), 100 nm (continuous red line), 150 nm (continuous dark green line), and 200 nm (continuous blue line). The differential reflectance curves were obtained for a change of the localized refractive index - 1 nm above the metallic film surface of a narrow groove silver nano-grating - from n = 1.33 to n = 1.53 upon binding of a 1 nm thick target having a refractive index of 1.53 on the surface of the metallic film. The dashed black line provides the baseline value of the amplitude of differential reflectance for a planar silver film evaluated using the Kretschmann configuration and employing wavelength interrogation. The other dashed lines provide the baseline values of the amplitude of differential reflectance for a planar silver film - evaluated using Kretschmann configuration and employing wavelength interrogation - that are normalized such that the planar silver film would have equivalent surface area as would be present in silver nano-gratings of groove periodicity ‘P’ when the value of ‘P’ is 50 nm (dashed light green line), 100 nm (dashed red line), 150 nm (dashed dark green line), and 200 nm (dashed blue line).

Metrics