Abstract

For developing a continuous-wave (CW) tunable Terahertz-wave (THz-wave) source using difference-frequency generation (DFG) in highly nonlinear optical crystals, we proposed and demonstrated a dual-wavelength fiber ring laser system operating around 1060 nm based on wideband chirped fiber Bragg gratings (CFBGs) and semiconductor optical amplifier (SOA). Thermo-induced phase shift along the CFBG produces a very sharp transmission spike therefore two lasing wavelengths with single longitudinal mode operation are oscillating simultaneously within the fiber ring cavity. Due to the inhomogeneous gain broadening property of SOA, the wavelength spacing of our dual-wavelength fiber laser can be continuously adjusted from 0.3 to 9.5 nm. By using this single emitter dual-wavelength fiber laser to pump an organic nonlinear DAST crystal, type-0 collinear phase matching of DFG process can be fulfilled and monochromatic THz wave ranging from 0.5 to 2 THz has been successfully generated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  2. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef]
  3. J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105(10), 102033 (2009).
    [CrossRef]
  4. H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
    [CrossRef]
  5. T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95(12), 7588–7591 (2004).
    [CrossRef]
  6. A. Godard, M. Raybaut, O. Lambert, J.-P. Faleni, M. Lefebvre, and E. Rosencher, “Cross-resonant optical parametric oscillators: study of and application to difference-frequency generation,” J. Opt. Soc. Am. B 22(9), 1966–1978 (2005).
    [CrossRef]
  7. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
    [CrossRef]
  8. C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
    [CrossRef]
  9. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
    [CrossRef]
  10. D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “The interaction of laser and photoconductor in a continuous-wave Terahertz photomixer,” IEEE J. Quantum Electron. 41(9), 1188–1196 (2005).
    [CrossRef]
  11. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
    [CrossRef]
  12. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [CrossRef]
  13. N. Kim, Y. A. Leem, J. H. Shin, C. W. Lee, S. P. Han, M. Y. Jeon, D. H. Lee, D. S. Yee, S. K. Noh, and K. H. Park, “Widely tunable dual-mode multisection laser diode for continuous-wave THz generation,” in Proceedings of 35th international conference on infrared, millimeter and terahertz waves (IRMMW-THz), (We-C3.1, Rome, Sep 5–10, 2010).
  14. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21(10), 2145–2153 (2003).
    [CrossRef]
  15. D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength signle-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 20083570 (2008).
  16. J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
    [CrossRef]
  17. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010).
    [CrossRef] [PubMed]
  18. S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
    [CrossRef] [PubMed]
  19. D. Liu, N. Q. Ngo, and S. C. Tjin, “A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing,” Opt. Commun. 281(18), 4715–4718 (2008).
    [CrossRef]
  20. N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
    [CrossRef] [PubMed]
  21. S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg grating spectral characteristics using a thermal head,” J. Lightwave Technol. 15(10), 1925–1928 (1997).
    [CrossRef]
  22. M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
    [CrossRef] [PubMed]
  23. T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1415 (2000).
    [CrossRef]
  24. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
    [CrossRef] [PubMed]
  25. M.-A. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photon. Technol. Lett. 21(1), 27–29 (2009).
    [CrossRef]

2010 (1)

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010).
[CrossRef] [PubMed]

2009 (3)

J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105(10), 102033 (2009).
[CrossRef]

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

M.-A. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photon. Technol. Lett. 21(1), 27–29 (2009).
[CrossRef]

2008 (5)

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

D. Liu, N. Q. Ngo, and S. C. Tjin, “A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing,” Opt. Commun. 281(18), 4715–4718 (2008).
[CrossRef]

C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
[CrossRef]

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength signle-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 20083570 (2008).

2007 (3)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

2005 (4)

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “The interaction of laser and photoconductor in a continuous-wave Terahertz photomixer,” IEEE J. Quantum Electron. 41(9), 1188–1196 (2005).
[CrossRef]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

A. Godard, M. Raybaut, O. Lambert, J.-P. Faleni, M. Lefebvre, and E. Rosencher, “Cross-resonant optical parametric oscillators: study of and application to difference-frequency generation,” J. Opt. Soc. Am. B 22(9), 1966–1978 (2005).
[CrossRef]

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
[CrossRef] [PubMed]

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95(12), 7588–7591 (2004).
[CrossRef]

2003 (1)

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21(10), 2145–2153 (2003).
[CrossRef]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

2000 (2)

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
[CrossRef]

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1415 (2000).
[CrossRef]

1997 (1)

S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg grating spectral characteristics using a thermal head,” J. Lightwave Technol. 15(10), 1925–1928 (1997).
[CrossRef]

Baker, C.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Bradley, I. V.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Brenner, C.

C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
[CrossRef]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Chen, D.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength signle-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 20083570 (2008).

Cheng, Y.

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

Davies, A. G.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Dong, X.

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[CrossRef] [PubMed]

Erbert, G.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
[CrossRef]

Evans, M. J.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Faleni, J.-P.

A. Godard, M. Raybaut, O. Lambert, J.-P. Faleni, M. Lefebvre, and E. Rosencher, “Cross-resonant optical parametric oscillators: study of and application to difference-frequency generation,” J. Opt. Soc. Am. B 22(9), 1966–1978 (2005).
[CrossRef]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Fricke, J.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Friedrich, C.-S.

C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
[CrossRef]

Fu, H.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength signle-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 20083570 (2008).

Fu, S.

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

Fujiwara, M.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

Godard, A.

A. Godard, M. Raybaut, O. Lambert, J.-P. Faleni, M. Lefebvre, and E. Rosencher, “Cross-resonant optical parametric oscillators: study of and application to difference-frequency generation,” J. Opt. Soc. Am. B 22(9), 1966–1978 (2005).
[CrossRef]

Gregory, I. S.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Gupta, S.

S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg grating spectral characteristics using a thermal head,” J. Lightwave Technol. 15(10), 1925–1928 (1997).
[CrossRef]

Harada, M.

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21(10), 2145–2153 (2003).
[CrossRef]

Hashimoto, H.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

Hatanaka, T.

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
[CrossRef]

He, S.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength signle-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 20083570 (2008).

Hirata, A.

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21(10), 2145–2153 (2003).
[CrossRef]

Hoffmann, S.

C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
[CrossRef]

Hofmann, M. R.

C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
[CrossRef]

Ito, H.

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010).
[CrossRef] [PubMed]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1415 (2000).
[CrossRef]

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
[CrossRef]

Jiang, S.

M.-A. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photon. Technol. Lett. 21(1), 27–29 (2009).
[CrossRef]

Kawase, K.

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
[CrossRef]

Klehr, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
[CrossRef]

Knauer, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Koch, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Lambert, O.

A. Godard, M. Raybaut, O. Lambert, J.-P. Faleni, M. Lefebvre, and E. Rosencher, “Cross-resonant optical parametric oscillators: study of and application to difference-frequency generation,” J. Opt. Soc. Am. B 22(9), 1966–1978 (2005).
[CrossRef]

Lefebvre, M.

A. Godard, M. Raybaut, O. Lambert, J.-P. Faleni, M. Lefebvre, and E. Rosencher, “Cross-resonant optical parametric oscillators: study of and application to difference-frequency generation,” J. Opt. Soc. Am. B 22(9), 1966–1978 (2005).
[CrossRef]

Leigh, M.-A.

M.-A. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photon. Technol. Lett. 21(1), 27–29 (2009).
[CrossRef]

Li, S. Y.

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
[CrossRef] [PubMed]

Linfield, E. H.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Liu, D.

D. Liu, N. Q. Ngo, and S. C. Tjin, “A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing,” Opt. Commun. 281(18), 4715–4718 (2008).
[CrossRef]

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[CrossRef] [PubMed]

Liu, J.

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Liu, M.

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

Liu, W.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength signle-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 20083570 (2008).

Lu, X. N.

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

Mansour, R. R.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “The interaction of laser and photoconductor in a continuous-wave Terahertz photomixer,” IEEE J. Quantum Electron. 41(9), 1188–1196 (2005).
[CrossRef]

Mayorga, I. C.

C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
[CrossRef]

Mikulics, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Minamide, H.

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010).
[CrossRef] [PubMed]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

Missous, M.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Miyamoto, K.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

Mizunami, T.

S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg grating spectral characteristics using a thermal head,” J. Lightwave Technol. 15(10), 1925–1928 (1997).
[CrossRef]

Nagatsuma, T.

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21(10), 2145–2153 (2003).
[CrossRef]

Nakamura, K.

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
[CrossRef]

Nakanishi, H.

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95(12), 7588–7591 (2004).
[CrossRef]

Nawahara, A.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Ngo, N. Q.

D. Liu, N. Q. Ngo, and S. C. Tjin, “A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing,” Opt. Commun. 281(18), 4715–4718 (2008).
[CrossRef]

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[CrossRef] [PubMed]

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
[CrossRef] [PubMed]

Notake, T.

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010).
[CrossRef] [PubMed]

Ohno, S.

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010).
[CrossRef] [PubMed]

Peyghambarian, N.

M.-A. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photon. Technol. Lett. 21(1), 27–29 (2009).
[CrossRef]

Raybaut, M.

A. Godard, M. Raybaut, O. Lambert, J.-P. Faleni, M. Lefebvre, and E. Rosencher, “Cross-resonant optical parametric oscillators: study of and application to difference-frequency generation,” J. Opt. Soc. Am. B 22(9), 1966–1978 (2005).
[CrossRef]

Rosencher, E.

A. Godard, M. Raybaut, O. Lambert, J.-P. Faleni, M. Lefebvre, and E. Rosencher, “Cross-resonant optical parametric oscillators: study of and application to difference-frequency generation,” J. Opt. Soc. Am. B 22(9), 1966–1978 (2005).
[CrossRef]

Saeedkia, D.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “The interaction of laser and photoconductor in a continuous-wave Terahertz photomixer,” IEEE J. Quantum Electron. 41(9), 1188–1196 (2005).
[CrossRef]

Safavi-Naeini, S.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “The interaction of laser and photoconductor in a continuous-wave Terahertz photomixer,” IEEE J. Quantum Electron. 41(9), 1188–1196 (2005).
[CrossRef]

Sato, T.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Schmitz, A.

C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
[CrossRef]

Shi, W.

M.-A. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photon. Technol. Lett. 21(1), 27–29 (2009).
[CrossRef]

Shikata, J.

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1415 (2000).
[CrossRef]

Shimomura, T.

S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg grating spectral characteristics using a thermal head,” J. Lightwave Technol. 15(10), 1925–1928 (1997).
[CrossRef]

Shum, P.

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[CrossRef] [PubMed]

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
[CrossRef] [PubMed]

Shum, P.-P.

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

Son, J.-H.

J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105(10), 102033 (2009).
[CrossRef]

Suizu, K.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Takahashi, H.

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
[CrossRef]

Tang, M.

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010).
[CrossRef] [PubMed]

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

Taniuchi, T.

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95(12), 7588–7591 (2004).
[CrossRef]

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
[CrossRef]

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1415 (2000).
[CrossRef]

Tian, X. L.

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

Tjin, S. C.

D. Liu, N. Q. Ngo, and S. C. Tjin, “A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing,” Opt. Commun. 281(18), 4715–4718 (2008).
[CrossRef]

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[CrossRef] [PubMed]

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
[CrossRef] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Tribe, W. R.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Walther, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Wang, Y.

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010).
[CrossRef] [PubMed]

Wei, Y.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength signle-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 20083570 (2008).

Wilk, R.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Yamashita, T.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Yao, J.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Yao, J. P.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Yao, Z.

M.-A. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photon. Technol. Lett. 21(1), 27–29 (2009).
[CrossRef]

Yeap, T. H.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Zhang, J.

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
[CrossRef] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Zhang, Z. R.

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

Zong, J.

M.-A. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photon. Technol. Lett. 21(1), 27–29 (2009).
[CrossRef]

Electron. Lett. (2)

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength signle-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 20083570 (2008).

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1415 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “The interaction of laser and photoconductor in a continuous-wave Terahertz photomixer,” IEEE J. Quantum Electron. 41(9), 1188–1196 (2005).
[CrossRef]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008).
[CrossRef]

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

M.-A. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photon. Technol. Lett. 21(1), 27–29 (2009).
[CrossRef]

J. Appl. Phys. (2)

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95(12), 7588–7591 (2004).
[CrossRef]

J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105(10), 102033 (2009).
[CrossRef]

J. Lightwave Technol. (2)

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21(10), 2145–2153 (2003).
[CrossRef]

S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg grating spectral characteristics using a thermal head,” J. Lightwave Technol. 15(10), 1925–1928 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

A. Godard, M. Raybaut, O. Lambert, J.-P. Faleni, M. Lefebvre, and E. Rosencher, “Cross-resonant optical parametric oscillators: study of and application to difference-frequency generation,” J. Opt. Soc. Am. B 22(9), 1966–1978 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Opt. Commun. (1)

D. Liu, N. Q. Ngo, and S. C. Tjin, “A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing,” Opt. Commun. 281(18), 4715–4718 (2008).
[CrossRef]

Opt. Lett. (6)

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[CrossRef] [PubMed]

M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
[CrossRef]

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010).
[CrossRef] [PubMed]

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Other (1)

N. Kim, Y. A. Leem, J. H. Shin, C. W. Lee, S. P. Han, M. Y. Jeon, D. H. Lee, D. S. Yee, S. K. Noh, and K. H. Park, “Widely tunable dual-mode multisection laser diode for continuous-wave THz generation,” in Proceedings of 35th international conference on infrared, millimeter and terahertz waves (IRMMW-THz), (We-C3.1, Rome, Sep 5–10, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic system configuration. Upper part is the dual-wavelength fiber laser system and the lower part is DAST-THz generation system, respectively.

Fig. 2
Fig. 2

Demonstration of reflection spectrum of CFBG2, transmission spectrum of CFBG1 and dual-wavelength transmission peaks of CFBG1 with heating wires. Offset is applied for clear illustration. Resolution: 0.01 nm.

Fig. 3
Fig. 3

(a). Tunable dual-wavelength fiber laser output. (b): the relative intensity spectrum of two wavelengths.

Fig. 4
Fig. 4

(a). Optical spectrum of dual-wavelength laser before and after YDFA (Resolution: 0.1 nm); (b): OSNR versus total pump power from YDFA.

Fig. 5
Fig. 5

(a). THz output versus pump power. Dashed lines are quadratic fitting curves; (b): THz output spectrum with fixed pump power: 0.85 Watt.

Metrics