Abstract

Nanofibres, optical fibres narrower than the wavelength of light, degrade in hours on exposure to air. We show that encapsulation in hydrophobic silica aerogel (refractive index 1.05) provides protection and stability (over 2 months) without sacrificing low attenuation, strong confinement and accessible evanescent field. The measured attenuation was <0.03 dB/mm, over 10 × lower than reported with other encapsulants. This enables many nanofibre applications based on their extreme small size and strong external evanescent field, such as optical sensors, nonlinear optics, nanofibre circuits and high-Q resonators. The aerogel is more than a waterproof box, it is a completely-compatible gas-permeable material in intimate contact with the nanofibre and hydrophobic on both the macroscopic and molecular scales. Its benefits are illustrated by experiments on gas sensing (exploiting the aerogel's porosity) and supercontinuum generation (exploiting its ultra-low index).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fibre,” Electron. Lett. 26(2), 130–132 (1990).
    [CrossRef]
  2. J. Bures and R. J. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16(8), 1992–1996 (1999).
    [CrossRef]
  3. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  4. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
    [CrossRef]
  5. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
    [CrossRef] [PubMed]
  6. G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett. 9(2), 831–835 (2009).
    [CrossRef] [PubMed]
  7. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [CrossRef] [PubMed]
  8. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [CrossRef] [PubMed]
  9. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
    [CrossRef] [PubMed]
  10. Y. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
    [CrossRef] [PubMed]
  11. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  12. M. Sumetsky, “Basic Elements for Microfiber Photonics: Micro/Nanofibers and Microfiber Coil Resonators,” J. Lightwave Technol. 26(1), 21–27 (2008).
    [CrossRef]
  13. G. Vienne, Y. Li, and L. M. Tong, “Effect of Host Polymer on Microfiber Resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
    [CrossRef]
  14. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–519 (2006).
    [CrossRef]
  15. F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
    [CrossRef]
  16. N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
    [CrossRef] [PubMed]
  17. G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225(1), 307–314 (1998).
    [CrossRef]
  18. L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
    [CrossRef] [PubMed]
  19. H. Yokogawa and M. Yokoyama, “Hydrophobic silica aerogels,” J. Non-Cryst. Solids 186, 23–29 (1995).
    [CrossRef]
  20. M. Sumetsky, “How thin can a microfiber be and still guide light?” Opt. Lett. 31(7), 870–872 (2006).
    [CrossRef] [PubMed]
  21. N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, “Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion,” Chem. Mater. 11(10), 2837–2845 (1999).
    [CrossRef]
  22. Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
    [CrossRef] [PubMed]
  23. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
    [CrossRef] [PubMed]
  24. A. Roig, E. Molins, E. Rodríguez, S. Martínez, M. Moreno-Mañas, and A. Vallribera, “Superhydrophobic silica aerogels by fluorination at the gel stage,” Chem. Commun. (Camb.) 20(20), 2316–2317 (2004).
    [CrossRef]
  25. T. Y. Wei, S. Y. Lu, and Y. C. J. Chang, “Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities,” J. Phys. Chem. B 112(38), 11881–11886 (2008).
    [CrossRef] [PubMed]
  26. C. A. Morris, M. L. Anderson, R. M. Stroud, C. I. Merzbacher, and D. R. Rolison, “Silica sol as a nanoglue: flexible synthesis of composite aerogels,” Science 284(5414), 622–624 (1999).
    [CrossRef] [PubMed]
  27. M. K. Yang, R. H. French, and E. W. J. Tokarsky, “Optical properties of Teflon AF amorphous fluoropolymers,” J. Micro/Nanolith. MEMS MOEMS 7(3), 033010 (2008).
    [CrossRef]
  28. T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, “Refractive index dispersion law of silica aerogel,” Eur. Phys. J. C 52(3), 759–764 (2007).
    [CrossRef]

2010 (1)

N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
[CrossRef] [PubMed]

2009 (3)

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett. 9(2), 831–835 (2009).
[CrossRef] [PubMed]

L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

2008 (6)

T. Y. Wei, S. Y. Lu, and Y. C. J. Chang, “Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities,” J. Phys. Chem. B 112(38), 11881–11886 (2008).
[CrossRef] [PubMed]

M. K. Yang, R. H. French, and E. W. J. Tokarsky, “Optical properties of Teflon AF amorphous fluoropolymers,” J. Micro/Nanolith. MEMS MOEMS 7(3), 033010 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[CrossRef]

Y. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[CrossRef] [PubMed]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. Sumetsky, “Basic Elements for Microfiber Photonics: Micro/Nanofibers and Microfiber Coil Resonators,” J. Lightwave Technol. 26(1), 21–27 (2008).
[CrossRef]

2007 (3)

G. Vienne, Y. Li, and L. M. Tong, “Effect of Host Polymer on Microfiber Resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[CrossRef]

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, “Refractive index dispersion law of silica aerogel,” Eur. Phys. J. C 52(3), 759–764 (2007).
[CrossRef]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Sumetsky, “How thin can a microfiber be and still guide light?” Opt. Lett. 31(7), 870–872 (2006).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

2005 (3)

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
[CrossRef] [PubMed]

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

2004 (2)

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[CrossRef] [PubMed]

A. Roig, E. Molins, E. Rodríguez, S. Martínez, M. Moreno-Mañas, and A. Vallribera, “Superhydrophobic silica aerogels by fluorination at the gel stage,” Chem. Commun. (Camb.) 20(20), 2316–2317 (2004).
[CrossRef]

2003 (2)

Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1999 (3)

J. Bures and R. J. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16(8), 1992–1996 (1999).
[CrossRef]

C. A. Morris, M. L. Anderson, R. M. Stroud, C. I. Merzbacher, and D. R. Rolison, “Silica sol as a nanoglue: flexible synthesis of composite aerogels,” Science 284(5414), 622–624 (1999).
[CrossRef] [PubMed]

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, “Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion,” Chem. Mater. 11(10), 2837–2845 (1999).
[CrossRef]

1998 (1)

G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225(1), 307–314 (1998).
[CrossRef]

1995 (1)

H. Yokogawa and M. Yokoyama, “Hydrophobic silica aerogels,” J. Non-Cryst. Solids 186, 23–29 (1995).
[CrossRef]

1990 (1)

H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fibre,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

Anderson, M. L.

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, “Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion,” Chem. Mater. 11(10), 2837–2845 (1999).
[CrossRef]

C. A. Morris, M. L. Anderson, R. M. Stroud, C. I. Merzbacher, and D. R. Rolison, “Silica sol as a nanoglue: flexible synthesis of composite aerogels,” Science 284(5414), 622–624 (1999).
[CrossRef] [PubMed]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Badenes, G.

N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
[CrossRef] [PubMed]

Bellunato, T.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, “Refractive index dispersion law of silica aerogel,” Eur. Phys. J. C 52(3), 759–764 (2007).
[CrossRef]

Birks, T. A.

L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[CrossRef] [PubMed]

Brambilla, G.

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett. 9(2), 831–835 (2009).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

Bures, J.

J. Bures and R. J. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16(8), 1992–1996 (1999).
[CrossRef]

Calvi, M.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, “Refractive index dispersion law of silica aerogel,” Eur. Phys. J. C 52(3), 759–764 (2007).
[CrossRef]

Chang, Y. C. J.

T. Y. Wei, S. Y. Lu, and Y. C. J. Chang, “Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities,” J. Phys. Chem. B 112(38), 11881–11886 (2008).
[CrossRef] [PubMed]

Chen, X. W.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Domínguez-Juárez, J. L.

N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
[CrossRef] [PubMed]

Eggleton, B. J.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Elder, I. A.

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, “Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion,” Chem. Mater. 11(10), 2837–2845 (1999).
[CrossRef]

England, R.

L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

Feng, X.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

Finazzi, V.

N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
[CrossRef] [PubMed]

French, R. H.

M. K. Yang, R. H. French, and E. W. J. Tokarsky, “Optical properties of Teflon AF amorphous fluoropolymers,” J. Micro/Nanolith. MEMS MOEMS 7(3), 033010 (2008).
[CrossRef]

Fu, L.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Gattass, R. R.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ghosh, R. J.

J. Bures and R. J. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16(8), 1992–1996 (1999).
[CrossRef]

Grivas, C.

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
[CrossRef] [PubMed]

Grogan, M. D. W.

L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

He, S. L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ho, H. L.

Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

Hoo, Y. L.

Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

Horak, P.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

Jha, R.

N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
[CrossRef] [PubMed]

Jin, W.

Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

Jung, Y.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

Koizumi, F.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

Koukharenko, E.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

Lamont, M. R. E.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Leon-Saval, S. G.

L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[CrossRef] [PubMed]

Leventis, N.

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, “Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion,” Chem. Mater. 11(10), 2837–2845 (1999).
[CrossRef]

Li, Y.

Y. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[CrossRef] [PubMed]

G. Vienne, Y. Li, and L. M. Tong, “Effect of Host Polymer on Microfiber Resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[CrossRef]

Liu, L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Lou, J. Y.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lou, N.

N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
[CrossRef] [PubMed]

Lu, S. Y.

T. Y. Wei, S. Y. Lu, and Y. C. J. Chang, “Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities,” J. Phys. Chem. B 112(38), 11881–11886 (2008).
[CrossRef] [PubMed]

MacKenzie, H. S.

H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fibre,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

Mägi, E. C.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Mansuripur, M.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
[CrossRef] [PubMed]

Martínez, S.

A. Roig, E. Molins, E. Rodríguez, S. Martínez, M. Moreno-Mañas, and A. Vallribera, “Superhydrophobic silica aerogels by fluorination at the gel stage,” Chem. Commun. (Camb.) 20(20), 2316–2317 (2004).
[CrossRef]

Mason, M. W.

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[CrossRef] [PubMed]

Matteuzzi, C.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, “Refractive index dispersion law of silica aerogel,” Eur. Phys. J. C 52(3), 759–764 (2007).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Merzbacher, C. I.

C. A. Morris, M. L. Anderson, R. M. Stroud, C. I. Merzbacher, and D. R. Rolison, “Silica sol as a nanoglue: flexible synthesis of composite aerogels,” Science 284(5414), 622–624 (1999).
[CrossRef] [PubMed]

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, “Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion,” Chem. Mater. 11(10), 2837–2845 (1999).
[CrossRef]

Molins, E.

A. Roig, E. Molins, E. Rodríguez, S. Martínez, M. Moreno-Mañas, and A. Vallribera, “Superhydrophobic silica aerogels by fluorination at the gel stage,” Chem. Commun. (Camb.) 20(20), 2316–2317 (2004).
[CrossRef]

Monzón-Hernández, D.

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

Moreno-Mañas, M.

A. Roig, E. Molins, E. Rodríguez, S. Martínez, M. Moreno-Mañas, and A. Vallribera, “Superhydrophobic silica aerogels by fluorination at the gel stage,” Chem. Commun. (Camb.) 20(20), 2316–2317 (2004).
[CrossRef]

Morris, C. A.

C. A. Morris, M. L. Anderson, R. M. Stroud, C. I. Merzbacher, and D. R. Rolison, “Silica sol as a nanoglue: flexible synthesis of composite aerogels,” Science 284(5414), 622–624 (1999).
[CrossRef] [PubMed]

Murugan, G. S.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

Musy, M.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, “Refractive index dispersion law of silica aerogel,” Eur. Phys. J. C 52(3), 759–764 (2007).
[CrossRef]

Pajonk, G. M.

G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225(1), 307–314 (1998).
[CrossRef]

Payne, D. N.

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett. 9(2), 831–835 (2009).
[CrossRef] [PubMed]

Payne, F. P.

H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fibre,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

Perego, D. L.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, “Refractive index dispersion law of silica aerogel,” Eur. Phys. J. C 52(3), 759–764 (2007).
[CrossRef]

Petrovich, M. N.

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
[CrossRef] [PubMed]

Peyghambarian, N.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
[CrossRef] [PubMed]

Polynkin, A.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
[CrossRef] [PubMed]

Polynkin, P.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
[CrossRef] [PubMed]

Pruneri, V.

N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
[CrossRef] [PubMed]

Richardson, D. J.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
[CrossRef] [PubMed]

Rodríguez, E.

A. Roig, E. Molins, E. Rodríguez, S. Martínez, M. Moreno-Mañas, and A. Vallribera, “Superhydrophobic silica aerogels by fluorination at the gel stage,” Chem. Commun. (Camb.) 20(20), 2316–2317 (2004).
[CrossRef]

Roelens, M. A. F.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Roig, A.

A. Roig, E. Molins, E. Rodríguez, S. Martínez, M. Moreno-Mañas, and A. Vallribera, “Superhydrophobic silica aerogels by fluorination at the gel stage,” Chem. Commun. (Camb.) 20(20), 2316–2317 (2004).
[CrossRef]

Rolison, D. R.

C. A. Morris, M. L. Anderson, R. M. Stroud, C. I. Merzbacher, and D. R. Rolison, “Silica sol as a nanoglue: flexible synthesis of composite aerogels,” Science 284(5414), 622–624 (1999).
[CrossRef] [PubMed]

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, “Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion,” Chem. Mater. 11(10), 2837–2845 (1999).
[CrossRef]

Ruan, S. C.

Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

Sessions, N. P.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shi, C. Z.

Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

St. J. Russell, P.

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[CrossRef] [PubMed]

Storaci, B.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, “Refractive index dispersion law of silica aerogel,” Eur. Phys. J. C 52(3), 759–764 (2007).
[CrossRef]

Stroud, R. M.

C. A. Morris, M. L. Anderson, R. M. Stroud, C. I. Merzbacher, and D. R. Rolison, “Silica sol as a nanoglue: flexible synthesis of composite aerogels,” Science 284(5414), 622–624 (1999).
[CrossRef] [PubMed]

Sumetsky, M.

M. Sumetsky, “Basic Elements for Microfiber Photonics: Micro/Nanofibers and Microfiber Coil Resonators,” J. Lightwave Technol. 26(1), 21–27 (2008).
[CrossRef]

M. Sumetsky, “How thin can a microfiber be and still guide light?” Opt. Lett. 31(7), 870–872 (2006).
[CrossRef] [PubMed]

Tokarsky, E. W. J.

M. K. Yang, R. H. French, and E. W. J. Tokarsky, “Optical properties of Teflon AF amorphous fluoropolymers,” J. Micro/Nanolith. MEMS MOEMS 7(3), 033010 (2008).
[CrossRef]

Tong, L. M.

Y. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[CrossRef] [PubMed]

G. Vienne, Y. Li, and L. M. Tong, “Effect of Host Polymer on Microfiber Resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[CrossRef]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Vallribera, A.

A. Roig, E. Molins, E. Rodríguez, S. Martínez, M. Moreno-Mañas, and A. Vallribera, “Superhydrophobic silica aerogels by fluorination at the gel stage,” Chem. Commun. (Camb.) 20(20), 2316–2317 (2004).
[CrossRef]

van Brakel, A.

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
[CrossRef] [PubMed]

Vienne, G.

G. Vienne, Y. Li, and L. M. Tong, “Effect of Host Polymer on Microfiber Resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[CrossRef]

Villatoro, J.

N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
[CrossRef] [PubMed]

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

Wadsworth, W. J.

L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[CrossRef] [PubMed]

Wang, D. N.

Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

Wei, T. Y.

T. Y. Wei, S. Y. Lu, and Y. C. J. Chang, “Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities,” J. Phys. Chem. B 112(38), 11881–11886 (2008).
[CrossRef] [PubMed]

Wilkinson, J. S.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

Williams, R.

L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

Xiao, L. M.

L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

Xu, F.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

Yang, M. K.

M. K. Yang, R. H. French, and E. W. J. Tokarsky, “Optical properties of Teflon AF amorphous fluoropolymers,” J. Micro/Nanolith. MEMS MOEMS 7(3), 033010 (2008).
[CrossRef]

Yeom, D. I.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Yokogawa, H.

H. Yokogawa and M. Yokoyama, “Hydrophobic silica aerogels,” J. Non-Cryst. Solids 186, 23–29 (1995).
[CrossRef]

Yokoyama, M.

H. Yokogawa and M. Yokoyama, “Hydrophobic silica aerogels,” J. Non-Cryst. Solids 186, 23–29 (1995).
[CrossRef]

Adv. Opt. Photon. (1)

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

Appl. Opt. (1)

Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (1)

A. Roig, E. Molins, E. Rodríguez, S. Martínez, M. Moreno-Mañas, and A. Vallribera, “Superhydrophobic silica aerogels by fluorination at the gel stage,” Chem. Commun. (Camb.) 20(20), 2316–2317 (2004).
[CrossRef]

Chem. Mater. (1)

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, “Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion,” Chem. Mater. 11(10), 2837–2845 (1999).
[CrossRef]

Electron. Lett. (2)

H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fibre,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

Eur. Phys. J. C (1)

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, “Refractive index dispersion law of silica aerogel,” Eur. Phys. J. C 52(3), 759–764 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Vienne, Y. Li, and L. M. Tong, “Effect of Host Polymer on Microfiber Resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[CrossRef]

J. Lightwave Technol. (1)

M. Sumetsky, “Basic Elements for Microfiber Photonics: Micro/Nanofibers and Microfiber Coil Resonators,” J. Lightwave Technol. 26(1), 21–27 (2008).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (1)

M. K. Yang, R. H. French, and E. W. J. Tokarsky, “Optical properties of Teflon AF amorphous fluoropolymers,” J. Micro/Nanolith. MEMS MOEMS 7(3), 033010 (2008).
[CrossRef]

J. Non-Cryst. Solids (2)

G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225(1), 307–314 (1998).
[CrossRef]

H. Yokogawa and M. Yokoyama, “Hydrophobic silica aerogels,” J. Non-Cryst. Solids 186, 23–29 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Bures and R. J. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16(8), 1992–1996 (1999).
[CrossRef]

J. Phys. Chem. B (1)

T. Y. Wei, S. Y. Lu, and Y. C. J. Chang, “Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities,” J. Phys. Chem. B 112(38), 11881–11886 (2008).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[CrossRef]

Nano Lett. (2)

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett. 9(2), 831–835 (2009).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[CrossRef] [PubMed]

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
[CrossRef] [PubMed]

Opt. Lett. (6)

N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
[CrossRef] [PubMed]

M. Sumetsky, “How thin can a microfiber be and still guide light?” Opt. Lett. 31(7), 870–872 (2006).
[CrossRef] [PubMed]

L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

Y. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[CrossRef] [PubMed]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
[CrossRef] [PubMed]

Science (1)

C. A. Morris, M. L. Anderson, R. M. Stroud, C. I. Merzbacher, and D. R. Rolison, “Silica sol as a nanoglue: flexible synthesis of composite aerogels,” Science 284(5414), 622–624 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic internal surface structures of (a) hydrophilic aerogel with hydroxyl groups and (b) hydrophobic aerogel with trimethylsilyl groups. The horizontal lines distinguish the surface groups above from the bulk glass below. (c) Hydrophilic aerogel is turned to white powder by a 2.6 mm diameter drop of water. (d) A similar water drop sits without reacting on the surface of hydrophobic aerogel with a contact angle of ~160°.

Fig. 2
Fig. 2

(a) A nanofibre 20 mm long and 800 nm in diameter embedded in hydrophobic aerogel. The fibre carries red laser light from left to right, to reveal the nanofibre waist by the weak scattering of the evanescent field by the aerogel. Scanning electron micrographs (SEMs) of nanofibres with diameters of (b) 28 µm and (c) 700 nm emerging from aerogel blocks that were broken to show the intimate contact between fibre and aerogel. Inset: SEM of an aerogel surface (500 nm scale bar) with pore structure small compared to optical wavelengths. (d) The loss spectrum of the nanofibre immediately after encapsulation. Inset: detail between 1510 and 1545 nm immediately after encapsulation and 15 days later.

Fig. 3
Fig. 3

(a) Calculated fraction of power in the fundamental mode's evanescent field at 1550 nm wavelength versus external index, for the nanofibre diameters marked. (b) Corresponding intensity distributions (normalised to a common peak value) along an axis perpendicular to the direction of the electrical field, for an 800 nm diameter nanofibre in air, aerogel and Teflon. The dotted lines mark the boundary of the nanofibre.

Fig. 4
Fig. 4

Steady-state transmission spectra of a nanofibre with waist length 20 mm and diameter 800 nm embedded in aerogel, after the surrounding air was replaced by acetylene gas at atmospheric pressure, and after the acetylene was replaced by air again. The spectra are both relative to the transmission before the acetylene was first introduced.

Fig. 5
Fig. 5

(a) Calculated dispersion spectra of a silica nanofibre of diameter 800 nm in air, aerogel and Teflon. The material dispersion of silica and Teflon [27] are included, but that of aerogel was ignored because its index variation with wavelength is small compared to bulk silica [28]. (b) The output supercontinuum spectrum from a nanofibre 20 mm long and 800 nm in diameter embedded in aerogel, pumped by ~300 fs pulses of 540 nm wavelength with a repetition rate of 20 MHz. The total output power measured with a thermal power meter was 5.7 mW. Inset is a photograph of the output far field pattern.

Metrics