Abstract

An improved approach has been developed for ultra-sensitive detection of the concentration of NO using Faraday Modulation spectrometry (FAMOS) combined with the strong electronic transition. By changing the modulating magnetic field attributing to linear absorption and refraction of gas sample, the polarized laser was rotated and absorbed by the complex refraction index of NO. We confirm the relation between the magnitudes of absorption and the optimum modulation magnetic field. Also, the accuracy and the precision of the technique have been evaluated at different pressures. It is shown that the system is capable of detecting NO concentration down to 0.34 ppb·m.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Seinfeld, and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.
  2. Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharm. Des. 5(6), 417–441 (1999).
    [PubMed]
  3. P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128(2), 137–150 (2002).
    [CrossRef]
  4. L. J. Ignarro, “Nitric oxide. A novel signal transduction mechanism for transcellular communication,” Hypertension 16(5), 477–483 (1990).
    [PubMed]
  5. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997).
    [CrossRef]
  6. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9(3), 327–338 (1998).
    [CrossRef]
  7. D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36(15), 3294–3297 (1997).
    [CrossRef] [PubMed]
  8. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
    [CrossRef]
  9. D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
    [CrossRef]
  10. S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
    [CrossRef] [PubMed]
  11. P. K. Falcone, R. K. Hansson, and C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35(1), 81–99 (1983).
    [CrossRef]
  12. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
    [CrossRef] [PubMed]
  13. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
    [CrossRef]
  14. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [CrossRef]
  15. A. Y. S. Cheng and M. H. Chan, “Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong,” Appl. Spectrosc. 58(12), 1462–1468 (2004).
    [CrossRef] [PubMed]
  16. J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005).
    [CrossRef]
  17. S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009).
    [CrossRef]
  18. N. Yamazoe and K. Shimanoe, “New perspectives of gas sensor technology,” Sens. Actuators B Chem. 138(1), 100–107 (2009).
    [CrossRef]
  19. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
    [CrossRef]
  20. L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).
  21. J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
    [CrossRef]
  22. T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008).
    [CrossRef]
  23. R. Gäbler and J. Lehmann, “Sensitive and isotope selective (14NO/15NO) online detection of nitric oxide by faraday-laser magnetic resonance spectroscopy,” Methods Enzymol. 396, 54–60 (2005).
    [CrossRef] [PubMed]
  24. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997).
    [CrossRef]
  25. J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007).
    [CrossRef]
  26. G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602 (1980).
    [CrossRef]
  27. W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986).
    [CrossRef]
  28. P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999).
    [PubMed]
  29. H. Ganser, W. Urban, and A. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101(4), 545–550 (2003).
    [CrossRef]
  30. F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
    [CrossRef] [PubMed]
  31. T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006).
    [CrossRef]
  32. S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008).
    [CrossRef] [PubMed]
  33. D. W. Robinson, “Magnetic rotation spectrum of A2Σ+←X2Π transition in NO II,” J. Chem. Phys. 50(11), 5018 (1969).
    [CrossRef]
  34. K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10 T,” J. Chem. Phys. 110(19), 9492–9499 (1999).
    [CrossRef]

2009 (2)

S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009).
[CrossRef]

N. Yamazoe and K. Shimanoe, “New perspectives of gas sensor technology,” Sens. Actuators B Chem. 138(1), 100–107 (2009).
[CrossRef]

2008 (2)

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008).
[CrossRef]

S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008).
[CrossRef] [PubMed]

2007 (1)

J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007).
[CrossRef]

2006 (2)

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006).
[CrossRef]

2005 (2)

R. Gäbler and J. Lehmann, “Sensitive and isotope selective (14NO/15NO) online detection of nitric oxide by faraday-laser magnetic resonance spectroscopy,” Methods Enzymol. 396, 54–60 (2005).
[CrossRef] [PubMed]

J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005).
[CrossRef]

2004 (5)

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

A. Y. S. Cheng and M. H. Chan, “Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong,” Appl. Spectrosc. 58(12), 1462–1468 (2004).
[CrossRef] [PubMed]

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
[CrossRef] [PubMed]

2003 (1)

H. Ganser, W. Urban, and A. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101(4), 545–550 (2003).
[CrossRef]

2002 (4)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
[CrossRef]

P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128(2), 137–150 (2002).
[CrossRef]

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

2001 (1)

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

1999 (3)

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharm. Des. 5(6), 417–441 (1999).
[PubMed]

P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999).
[PubMed]

K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10 T,” J. Chem. Phys. 110(19), 9492–9499 (1999).
[CrossRef]

1998 (2)

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9(3), 327–338 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[CrossRef]

1997 (3)

D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36(15), 3294–3297 (1997).
[CrossRef] [PubMed]

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997).
[CrossRef]

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997).
[CrossRef]

1990 (1)

L. J. Ignarro, “Nitric oxide. A novel signal transduction mechanism for transcellular communication,” Hypertension 16(5), 477–483 (1990).
[PubMed]

1986 (1)

W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986).
[CrossRef]

1983 (1)

P. K. Falcone, R. K. Hansson, and C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35(1), 81–99 (1983).
[CrossRef]

1980 (1)

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602 (1980).
[CrossRef]

1969 (1)

D. W. Robinson, “Magnetic rotation spectrum of A2Σ+←X2Π transition in NO II,” J. Chem. Phys. 50(11), 5018 (1969).
[CrossRef]

Abe, H.

K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10 T,” J. Chem. Phys. 110(19), 9492–9499 (1999).
[CrossRef]

Abraham, T.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Allen, M. G.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[CrossRef]

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997).
[CrossRef]

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997).
[CrossRef]

Ansel, J. C.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Armstrong, C. A.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Atwater, J. W.

P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128(2), 137–150 (2002).
[CrossRef]

Axner, O.

J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007).
[CrossRef]

Baer, D. S.

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9(3), 327–338 (1998).
[CrossRef]

Baillargeon, J. N.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

Bakhirkin, Y. A.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
[CrossRef] [PubMed]

Barton, P. K.

P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128(2), 137–150 (2002).
[CrossRef]

Berezin, A. G.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
[CrossRef]

Bertaux, J.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006).
[CrossRef]

Blaser, S.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

Bloch, W.

P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999).
[PubMed]

Bohle, W.

W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986).
[CrossRef]

Boyd, J.

S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008).
[CrossRef] [PubMed]

Brown, A.

H. Ganser, W. Urban, and A. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101(4), 545–550 (2003).
[CrossRef]

Brown, R. C.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Capasso, F.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

Chan, M. H.

A. Y. S. Cheng and M. H. Chan, “Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong,” Appl. Spectrosc. 58(12), 1462–1468 (2004).
[CrossRef] [PubMed]

Chassefiere, E.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006).
[CrossRef]

Cheng, A. Y. S.

A. Y. S. Cheng and M. H. Chan, “Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong,” Appl. Spectrosc. 58(12), 1462–1468 (2004).
[CrossRef] [PubMed]

Cho, A. Y.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

Curl, J. R. F.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602 (1980).
[CrossRef]

Curl, R. F.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
[CrossRef] [PubMed]

Demerjian, K.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Durry, G.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006).
[CrossRef]

Ebert, V.

S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009).
[CrossRef]

Ershov, O. V.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
[CrossRef]

Faist, J.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

Falcone, P. K.

P. K. Falcone, R. K. Hansson, and C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35(1), 81–99 (1983).
[CrossRef]

Fisher, B.

S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009).
[CrossRef]

Fleming, J.

S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009).
[CrossRef]

Frischat, G. H.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).

Fritsch, T.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008).
[CrossRef]

Gäbler, R.

R. Gäbler and J. Lehmann, “Sensitive and isotope selective (14NO/15NO) online detection of nitric oxide by faraday-laser magnetic resonance spectroscopy,” Methods Enzymol. 396, 54–60 (2005).
[CrossRef] [PubMed]

Ganser, H.

H. Ganser, W. Urban, and A. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101(4), 545–550 (2003).
[CrossRef]

Gao, X. M.

J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005).
[CrossRef]

Giovannini, M.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

Glass, J. D.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Gmachl, C.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

Guo, S.

S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008).
[CrossRef] [PubMed]

Halmer, D.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008).
[CrossRef]

Hanson, R. K.

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9(3), 327–338 (1998).
[CrossRef]

Hansson, R. K.

P. K. Falcone, R. K. Hansson, and C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35(1), 81–99 (1983).
[CrossRef]

Heide, G.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).

Hering, P.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008).
[CrossRef]

Herndon, S.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

Herndon, S. C.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Hess, A.

P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999).
[PubMed]

Hinz, A.

W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986).
[CrossRef]

Horstjann, M.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008).
[CrossRef]

Hou, Y. C.

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharm. Des. 5(6), 417–441 (1999).
[PubMed]

Hutchinson, A. L.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

Hvozdara, L.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

Ignarro, L. J.

L. J. Ignarro, “Nitric oxide. A novel signal transduction mechanism for transcellular communication,” Hypertension 16(5), 477–483 (1990).
[PubMed]

Jaiani, L. T.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Janczuk, A.

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharm. Des. 5(6), 417–441 (1999).
[PubMed]

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Jayne, J.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Khorsandi, A.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).

Kolb, C. E.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Korablev, O.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006).
[CrossRef]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Kosterev, A. A.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
[CrossRef] [PubMed]

Kruger, C. H.

P. K. Falcone, R. K. Hansson, and C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35(1), 81–99 (1983).
[CrossRef]

Lang, R.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Lanni, T.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Lathdavong, L.

J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007).
[CrossRef]

Le Barbu, T.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006).
[CrossRef]

Legat, F. J.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Lehmann, J.

R. Gäbler and J. Lehmann, “Sensitive and isotope selective (14NO/15NO) online detection of nitric oxide by faraday-laser magnetic resonance spectroscopy,” Methods Enzymol. 396, 54–60 (2005).
[CrossRef] [PubMed]

Litfin, G.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602 (1980).
[CrossRef]

Loewen, M. C.

S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008).
[CrossRef] [PubMed]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

McManus, J.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

Menzel, L.

P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999).
[PubMed]

Miake-Lye, R. C.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Michel, O.

P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999).
[PubMed]

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9(3), 327–338 (1998).
[CrossRef]

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Muller, A.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

Mürtz, M.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008).
[CrossRef]

Mürtz, P.

P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999).
[PubMed]

Nadezhdinskii, A. I.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
[CrossRef]

Nelson, D.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

Nelson, D. D.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Ning, L. X.

J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005).
[CrossRef]

Oh, D. B.

D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36(15), 3294–3297 (1997).
[CrossRef] [PubMed]

Pollock, C. R.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602 (1980).
[CrossRef]

Rawlins, W. T.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

Robinson, D. W.

D. W. Robinson, “Magnetic rotation spectrum of A2Σ+←X2Π transition in NO II,” J. Chem. Phys. 50(11), 5018 (1969).
[CrossRef]

Roller, C.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
[CrossRef] [PubMed]

Sabana, P.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008).
[CrossRef]

Sammynaiken, R.

S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008).
[CrossRef] [PubMed]

Schade, W.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).

Shao, J.

J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007).
[CrossRef]

J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005).
[CrossRef]

Shimanoe, K.

N. Yamazoe and K. Shimanoe, “New perspectives of gas sensor technology,” Sens. Actuators B Chem. 138(1), 100–107 (2009).
[CrossRef]

Shorter, J.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

Shorter, J. H.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Silva, P.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Sivco, D. L.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Solomon, A. R.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Sonnenfroh, D. M.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997).
[CrossRef]

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997).
[CrossRef]

Stanton, A. C.

D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36(15), 3294–3297 (1997).
[CrossRef] [PubMed]

Takazawa, K.

K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10 T,” J. Chem. Phys. 110(19), 9492–9499 (1999).
[CrossRef]

Thavixay, P.

J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007).
[CrossRef]

Tittel, F. K.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
[CrossRef] [PubMed]

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602 (1980).
[CrossRef]

Urban, W.

H. Ganser, W. Urban, and A. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101(4), 545–550 (2003).
[CrossRef]

P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999).
[PubMed]

W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986).
[CrossRef]

Vinogradov, I.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006).
[CrossRef]

Wagner, S.

S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009).
[CrossRef]

Waitz, I.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Wang, M.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Wang, P. G.

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharm. Des. 5(6), 417–441 (1999).
[PubMed]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Werner, J.

W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986).
[CrossRef]

Willer, U.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).

Wolf, P.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Wondraczek, L.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).

Yamazoe, N.

N. Yamazoe and K. Shimanoe, “New perspectives of gas sensor technology,” Sens. Actuators B Chem. 138(1), 100–107 (2009).
[CrossRef]

Yuan, Y. Q.

J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005).
[CrossRef]

Zahniser, M.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

Zahniser, M. S.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Zeitz, D.

W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986).
[CrossRef]

Zhang, W. J.

J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005).
[CrossRef]

Adv. Space Res. (1)

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006).
[CrossRef]

Appl. Opt. (5)

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997).
[CrossRef]

D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36(15), 3294–3297 (1997).
[CrossRef] [PubMed]

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001).
[CrossRef]

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
[CrossRef] [PubMed]

Appl. Phys. B (4)

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002).
[CrossRef]

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002).
[CrossRef]

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006).
[CrossRef]

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008).
[CrossRef]

Appl. Spectrosc. (1)

A. Y. S. Cheng and M. H. Chan, “Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong,” Appl. Spectrosc. 58(12), 1462–1468 (2004).
[CrossRef] [PubMed]

Biochem. Cell Biol. (1)

S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008).
[CrossRef] [PubMed]

Chin. Phys. (1)

J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005).
[CrossRef]

Combust. Sci. Technol. (1)

P. K. Falcone, R. K. Hansson, and C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35(1), 81–99 (1983).
[CrossRef]

Curr. Pharm. Des. (1)

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharm. Des. 5(6), 417–441 (1999).
[PubMed]

Environ. Sci. Technol. (1)

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004).
[CrossRef] [PubMed]

Exp. Dermatol. (1)

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004).
[CrossRef] [PubMed]

Glass Sci. Technol. (1)

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).

Hypertension (1)

L. J. Ignarro, “Nitric oxide. A novel signal transduction mechanism for transcellular communication,” Hypertension 16(5), 477–483 (1990).
[PubMed]

J. Appl. Physiol. (1)

P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999).
[PubMed]

J. Chem. Phys. (3)

D. W. Robinson, “Magnetic rotation spectrum of A2Σ+←X2Π transition in NO II,” J. Chem. Phys. 50(11), 5018 (1969).
[CrossRef]

K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10 T,” J. Chem. Phys. 110(19), 9492–9499 (1999).
[CrossRef]

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602 (1980).
[CrossRef]

J. Environ. Eng. (1)

P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128(2), 137–150 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007).
[CrossRef]

Meas. Sci. Technol. (2)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9(3), 327–338 (1998).
[CrossRef]

Methods Enzymol. (1)

R. Gäbler and J. Lehmann, “Sensitive and isotope selective (14NO/15NO) online detection of nitric oxide by faraday-laser magnetic resonance spectroscopy,” Methods Enzymol. 396, 54–60 (2005).
[CrossRef] [PubMed]

Mol. Phys. (2)

W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986).
[CrossRef]

H. Ganser, W. Urban, and A. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101(4), 545–550 (2003).
[CrossRef]

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Proc. Combust. Inst. (1)

S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009).
[CrossRef]

Sens. Actuators B Chem. (1)

N. Yamazoe and K. Shimanoe, “New perspectives of gas sensor technology,” Sens. Actuators B Chem. 138(1), 100–107 (2009).
[CrossRef]

Other (1)

J. H. Seinfeld, and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulation of an absorption spectrum in the 226.55 – 226.61 nm region of the γ(0,0) band of NO

Fig. 2
Fig. 2

Simulated FAMOS signals of the overlapped Q22(10.5) and QR12(10.5) transitions of NO in γ(0,0) band with assumed linewidth (HWHM) is 0.04965 cm−1. The 8 curves correspond to magnetic field amplitudes of 100, 200, 400, 800, 1000, 1200, 1500 and 2000G, respectively.

Fig. 3
Fig. 3

The amplitude of FAMOS signals under Doppler contribution on resonance as a function of magnetic modulation amplitude from 100 to 3000 Gauss

Fig. 4
Fig. 4

Scheme of the FAMOS spectrometer developed in this work

Fig. 5
Fig. 5

Upper panel: measured and fitted FAMOS signal for the combined Q22(10.5) and QR12(10.5)transition at around 226.577 nm for 4.2 Torr of 100 ppm of NO in N2, corresponding to a concentration of 55 ppb.m. Lower panel: the residual which the standard deviation σ of the fit coefficients corresponds to 1.8 ppb.m

Fig. 6
Fig. 6

Measured FAMOS spectra for a set of total pressures of the 100 ppm NO / N2 gas mixture. The various curves represent total pressures of 1, 2, 4.2, 8, 10, 20, 30, 50, 60, 69.6, 80, 90, 90, 100, 110, 118 128, and 149.5 Torr, respectively.

Fig. 7
Fig. 7

A set of FAMOS signal magnitude from measurement according to different premixed 100 ppm NO in N2. The relatively large error bars originate from temperature fluctuations in the NO cell. The solid curve is a two order polynomial curve fit is obtained from the measured amplitudes and known NO concentration levels.

Fig. 8
Fig. 8

NO concentration measurement from different relative concentration.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S ( υ ) = p = ± 1 M M p S M M ( υ )
p = M M = ± 1
S M M ( υ ) = X ( J M ; J M ) χ ( υ , υ M M , Γ ) e ( E J / k T )
X M M = S J J ( J 1 J M p M ) 2
χ ( υ , υ M M ) = 1 N V υ τ υ M M γ P 2 + ( υ τ υ M M ) 2 e ( τ υ M M γ D / ln 2 ) 2 d τ
υ M M = υ 0 + ( M g M g ) μ 0 B h

Metrics