Abstract

Characteristics of Tm:YAG ceramic for high efficient 2-μm lasers are analyzed. Efficient diode end-pumped continuous-wave and Q-switched Tm:YAG ceramic lasers are demonstrated. At the absorbed pump power of 53.2W, the maximum continuous wave (cw) output power of 17.2 W around 2016 nm was obtained with the output transmission of 5%. The optical conversion efficiency is 32.3%, corresponding to a slope efficiency of 36.5%. For Q-switched operation, the shortest width of 69 ns was achieved with the pulse repetition frequency of 500 Hz and single pulse energy of 20.4 mJ, which indicates excellent energy storage capability of the Tm:YAG ceramic.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29(11), 1212–1214 (2004).
    [CrossRef] [PubMed]
  2. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
    [CrossRef]
  3. L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminshii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
    [CrossRef]
  4. Q. Yang, C. Dou, J. Ding, X. Hu, and J. Xu, “Spectral characterization of transparent (Nd0.01Y0.94La0.05)2O3 laser ceramics,” Appl. Phys. Lett. 91(11), 111918 (2007).
    [CrossRef]
  5. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y(2)O(3) ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
    [CrossRef] [PubMed]
  6. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
    [CrossRef] [PubMed]
  7. Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
    [CrossRef] [PubMed]
  8. D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13(16), 6212–6216 (2005).
    [CrossRef] [PubMed]
  9. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [CrossRef] [PubMed]
  10. J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
    [CrossRef] [PubMed]
  11. Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
    [CrossRef] [PubMed]
  12. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
    [CrossRef]
  13. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).
  14. S. Y. Zhang, X. J. Cheng, L. Xu, and J. Q. Xu, “Power scaling of continuous-wave diode-end pump Tm:LiLuF4 slab laser,” Laser Phys. Lett. 6(12), 856–859 (2009).
    [CrossRef]
  15. X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
    [CrossRef] [PubMed]
  16. C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
    [CrossRef] [PubMed]
  17. X. Cheng, J. Q. Xu, W. Zhang, B. Jiang, and Y. Pan, “End-Pumped Tm:YAG ceramic slab lasers,” Chin. Phys. Lett. 26(7), 074204 (2009).
    [CrossRef]
  18. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
    [CrossRef]
  19. A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr(2+):ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
    [CrossRef] [PubMed]
  20. A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
    [CrossRef]
  21. E. Sorokin, “Solid-State Materials for Few-Cycle Pulse Generation and Amplification,” Top. Appl. Phys. 95, 3–73 (2004).
  22. N. Ohlsson, M. Nilsson, S. Kröll, and R. K. Mohan, “Long-time-storage mechanism for Tm:YAG in a magnetic field,” Opt. Lett. 28(6), 450–452 (2003).
    [CrossRef] [PubMed]
  23. C. Bollig, W. A. Clarkson, R. A. Hayward, and D. C. Hanna, “Efficient high-power Tm:YAG laser at 2 μm, end-pumped by a diode bar,” Opt. Commun. 154(1-3), 35–38 (1998).
    [CrossRef]
  24. M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
    [CrossRef] [PubMed]
  25. J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
    [CrossRef] [PubMed]

2009 (6)

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[CrossRef]

S. Y. Zhang, X. J. Cheng, L. Xu, and J. Q. Xu, “Power scaling of continuous-wave diode-end pump Tm:LiLuF4 slab laser,” Laser Phys. Lett. 6(12), 856–859 (2009).
[CrossRef]

X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
[CrossRef] [PubMed]

X. Cheng, J. Q. Xu, W. Zhang, B. Jiang, and Y. Pan, “End-Pumped Tm:YAG ceramic slab lasers,” Chin. Phys. Lett. 26(7), 074204 (2009).
[CrossRef]

2008 (2)

J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
[CrossRef] [PubMed]

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

2007 (4)

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

Q. Yang, C. Dou, J. Ding, X. Hu, and J. Xu, “Spectral characterization of transparent (Nd0.01Y0.94La0.05)2O3 laser ceramics,” Appl. Phys. Lett. 91(11), 111918 (2007).
[CrossRef]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y(2)O(3) ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr(2+):ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
[CrossRef] [PubMed]

2005 (1)

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13(16), 6212–6216 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[CrossRef] [PubMed]

E. Sorokin, “Solid-State Materials for Few-Cycle Pulse Generation and Amplification,” Top. Appl. Phys. 95, 3–73 (2004).

2003 (1)

N. Ohlsson, M. Nilsson, S. Kröll, and R. K. Mohan, “Long-time-storage mechanism for Tm:YAG in a magnetic field,” Opt. Lett. 28(6), 450–452 (2003).
[CrossRef] [PubMed]

2001 (1)

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

2000 (3)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminshii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

1999 (1)

C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
[CrossRef] [PubMed]

1998 (1)

C. Bollig, W. A. Clarkson, R. A. Hayward, and D. C. Hanna, “Efficient high-power Tm:YAG laser at 2 μm, end-pumped by a diode bar,” Opt. Commun. 154(1-3), 35–38 (1998).
[CrossRef]

1997 (1)

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

Alderighi, D.

A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[CrossRef]

Aung, Y. L.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

Badikov, V. V.

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr(2+):ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
[CrossRef] [PubMed]

Bollig, C.

C. Bollig, W. A. Clarkson, R. A. Hayward, and D. C. Hanna, “Efficient high-power Tm:YAG laser at 2 μm, end-pumped by a diode bar,” Opt. Commun. 154(1-3), 35–38 (1998).
[CrossRef]

Byer, R. L.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

Cao, Y.

C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
[CrossRef] [PubMed]

Cheng, X.

X. Cheng, J. Q. Xu, W. Zhang, B. Jiang, and Y. Pan, “End-Pumped Tm:YAG ceramic slab lasers,” Chin. Phys. Lett. 26(7), 074204 (2009).
[CrossRef]

X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
[CrossRef] [PubMed]

Cheng, X. J.

S. Y. Zhang, X. J. Cheng, L. Xu, and J. Q. Xu, “Power scaling of continuous-wave diode-end pump Tm:LiLuF4 slab laser,” Laser Phys. Lett. 6(12), 856–859 (2009).
[CrossRef]

Clarkson, W. A.

C. Bollig, W. A. Clarkson, R. A. Hayward, and D. C. Hanna, “Efficient high-power Tm:YAG laser at 2 μm, end-pumped by a diode bar,” Opt. Commun. 154(1-3), 35–38 (1998).
[CrossRef]

Dierolf, V.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

Ding, J.

Q. Yang, C. Dou, J. Ding, X. Hu, and J. Xu, “Spectral characterization of transparent (Nd0.01Y0.94La0.05)2O3 laser ceramics,” Appl. Phys. Lett. 91(11), 111918 (2007).
[CrossRef]

Dong, J.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

Dou, C.

Q. Yang, C. Dou, J. Ding, X. Hu, and J. Xu, “Spectral characterization of transparent (Nd0.01Y0.94La0.05)2O3 laser ceramics,” Appl. Phys. Lett. 91(11), 111918 (2007).
[CrossRef]

Du, J.

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[CrossRef] [PubMed]

Fallnich, C.

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13(16), 6212–6216 (2005).
[CrossRef] [PubMed]

Fan, Y. X.

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[CrossRef] [PubMed]

Fedorov, V. V.

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr(2+):ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
[CrossRef] [PubMed]

Frede, M.

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13(16), 6212–6216 (2005).
[CrossRef] [PubMed]

Galkin, S. N.

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr(2+):ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
[CrossRef] [PubMed]

Gallian, A.

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr(2+):ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
[CrossRef] [PubMed]

Gopalan, V.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

Graf, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Hang, Y.

X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
[CrossRef] [PubMed]

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[CrossRef] [PubMed]

Hanna, D. C.

C. Bollig, W. A. Clarkson, R. A. Hayward, and D. C. Hanna, “Efficient high-power Tm:YAG laser at 2 μm, end-pumped by a diode bar,” Opt. Commun. 154(1-3), 35–38 (1998).
[CrossRef]

Hao, Q.

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Harder, C.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Hayward, R. A.

C. Bollig, W. A. Clarkson, R. A. Hayward, and D. C. Hanna, “Efficient high-power Tm:YAG laser at 2 μm, end-pumped by a diode bar,” Opt. Commun. 154(1-3), 35–38 (1998).
[CrossRef]

He, J. L.

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[CrossRef] [PubMed]

He, S.

C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
[CrossRef] [PubMed]

Hu, X.

Q. Yang, C. Dou, J. Ding, X. Hu, and J. Xu, “Spectral characterization of transparent (Nd0.01Y0.94La0.05)2O3 laser ceramics,” Appl. Phys. Lett. 91(11), 111918 (2007).
[CrossRef]

Huber, G.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Huo, Y.

C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
[CrossRef] [PubMed]

Ikesue, A.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

Jiang, B.

X. Cheng, J. Q. Xu, W. Zhang, B. Jiang, and Y. Pan, “End-Pumped Tm:YAG ceramic slab lasers,” Chin. Phys. Lett. 26(7), 074204 (2009).
[CrossRef]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Jianqiu, X.

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminshii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Jianren, L.

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminshii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Kaminshii, A. A.

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminshii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Kaminskii, A. A.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Keller, U.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Kim, N. S.

C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
[CrossRef] [PubMed]

Kong, J.

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

Kracht, D.

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13(16), 6212–6216 (2005).
[CrossRef] [PubMed]

Kröll, S.

N. Ohlsson, M. Nilsson, S. Kröll, and R. K. Mohan, “Long-time-storage mechanism for Tm:YAG in a magnetic field,” Opt. Lett. 28(6), 450–452 (2003).
[CrossRef] [PubMed]

Kullberg, M. P.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Lalayants, A. I.

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr(2+):ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
[CrossRef] [PubMed]

Li, C.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
[CrossRef] [PubMed]

Li, H.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

Li, J. L.

J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
[CrossRef] [PubMed]

Li, W.

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Liu, S.

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[CrossRef] [PubMed]

Liu, Z.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

Lu, J.

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Messing, G. L.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

Mirov, S. B.

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr(2+):ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
[CrossRef] [PubMed]

Mix, E.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Mohan, R. K.

N. Ohlsson, M. Nilsson, S. Kröll, and R. K. Mohan, “Long-time-storage mechanism for Tm:YAG in a magnetic field,” Opt. Lett. 28(6), 450–452 (2003).
[CrossRef] [PubMed]

Moser, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Musha, M.

J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
[CrossRef] [PubMed]

Nilsson, M.

N. Ohlsson, M. Nilsson, S. Kröll, and R. K. Mohan, “Long-time-storage mechanism for Tm:YAG in a magnetic field,” Opt. Lett. 28(6), 450–452 (2003).
[CrossRef] [PubMed]

Ohlsson, N.

N. Ohlsson, M. Nilsson, S. Kröll, and R. K. Mohan, “Long-time-storage mechanism for Tm:YAG in a magnetic field,” Opt. Lett. 28(6), 450–452 (2003).
[CrossRef] [PubMed]

Pan, H.

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Pan, Y.

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

X. Cheng, J. Q. Xu, W. Zhang, B. Jiang, and Y. Pan, “End-Pumped Tm:YAG ceramic slab lasers,” Chin. Phys. Lett. 26(7), 074204 (2009).
[CrossRef]

Paschotta, R.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Peng, H.

X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
[CrossRef] [PubMed]

Pirri, A.

A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[CrossRef]

Prabhu, M.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminshii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Qian, L. J.

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y(2)O(3) ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[CrossRef] [PubMed]

Ramirez, M. O.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

Shen, D.

C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
[CrossRef] [PubMed]

Shirakawa, A.

J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[CrossRef] [PubMed]

Song, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
[CrossRef] [PubMed]

Sorokin, E.

E. Sorokin, “Solid-State Materials for Few-Cycle Pulse Generation and Amplification,” Top. Appl. Phys. 95, 3–73 (2004).

Spühler, G. J.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

Stitt, J.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

Tang, D. Y.

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y(2)O(3) ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

Toci, G.

A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[CrossRef]

Ueda, K.

J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y(2)O(3) ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminshii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
[CrossRef] [PubMed]

Vannini, M.

A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[CrossRef]

Voronkin, E. F.

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr(2+):ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
[CrossRef] [PubMed]

Wang, H. T.

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[CrossRef] [PubMed]

Wang, Y. G.

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[CrossRef] [PubMed]

Wilhelm, R.

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13(16), 6212–6216 (2005).
[CrossRef] [PubMed]

Wisdom, J.

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

Xie, G. Q.

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y(2)O(3) ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[CrossRef] [PubMed]

Xu, J.

X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
[CrossRef] [PubMed]

Q. Yang, C. Dou, J. Ding, X. Hu, and J. Xu, “Spectral characterization of transparent (Nd0.01Y0.94La0.05)2O3 laser ceramics,” Appl. Phys. Lett. 91(11), 111918 (2007).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Xu, J. Q.

X. Cheng, J. Q. Xu, W. Zhang, B. Jiang, and Y. Pan, “End-Pumped Tm:YAG ceramic slab lasers,” Chin. Phys. Lett. 26(7), 074204 (2009).
[CrossRef]

S. Y. Zhang, X. J. Cheng, L. Xu, and J. Q. Xu, “Power scaling of continuous-wave diode-end pump Tm:LiLuF4 slab laser,” Laser Phys. Lett. 6(12), 856–859 (2009).
[CrossRef]

Xu, L.

S. Y. Zhang, X. J. Cheng, L. Xu, and J. Q. Xu, “Power scaling of continuous-wave diode-end pump Tm:LiLuF4 slab laser,” Laser Phys. Lett. 6(12), 856–859 (2009).
[CrossRef]

Yagi, H.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminshii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Yamaga, I.

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

Yamamoto, T.

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

Yanagitani, T.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminshii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Yang, Q.

Q. Yang, C. Dou, J. Ding, X. Hu, and J. Xu, “Spectral characterization of transparent (Nd0.01Y0.94La0.05)2O3 laser ceramics,” Appl. Phys. Lett. 91(11), 111918 (2007).
[CrossRef]

Yoshida, K.

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

Zeng, H.

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Zhang, L. H.

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[CrossRef] [PubMed]

Zhang, S.

X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
[CrossRef] [PubMed]

Zhang, S. Y.

S. Y. Zhang, X. J. Cheng, L. Xu, and J. Q. Xu, “Power scaling of continuous-wave diode-end pump Tm:LiLuF4 slab laser,” Laser Phys. Lett. 6(12), 856–859 (2009).
[CrossRef]

Zhang, W.

X. Cheng, J. Q. Xu, W. Zhang, B. Jiang, and Y. Pan, “End-Pumped Tm:YAG ceramic slab lasers,” Chin. Phys. Lett. 26(7), 074204 (2009).
[CrossRef]

Zhang, X.

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

Zhao, L. M.

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y(2)O(3) ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[CrossRef] [PubMed]

Zhong, L. X.

J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
[CrossRef] [PubMed]

Appl. Phys. B (3)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminshii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Q. Yang, C. Dou, J. Ding, X. Hu, and J. Xu, “Spectral characterization of transparent (Nd0.01Y0.94La0.05)2O3 laser ceramics,” Appl. Phys. Lett. 91(11), 111918 (2007).
[CrossRef]

Chin. Phys. Lett. (1)

X. Cheng, J. Q. Xu, W. Zhang, B. Jiang, and Y. Pan, “End-Pumped Tm:YAG ceramic slab lasers,” Chin. Phys. Lett. 26(7), 074204 (2009).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

Laser Phys. Lett. (1)

S. Y. Zhang, X. J. Cheng, L. Xu, and J. Q. Xu, “Power scaling of continuous-wave diode-end pump Tm:LiLuF4 slab laser,” Laser Phys. Lett. 6(12), 856–859 (2009).
[CrossRef]

Opt. Commun. (1)

C. Bollig, W. A. Clarkson, R. A. Hayward, and D. C. Hanna, “Efficient high-power Tm:YAG laser at 2 μm, end-pumped by a diode bar,” Opt. Commun. 154(1-3), 35–38 (1998).
[CrossRef]

Opt. Express (9)

M. O. Ramirez, J. Wisdom, H. Li, Y. L. Aung, J. Stitt, G. L. Messing, V. Dierolf, Z. Liu, A. Ikesue, R. L. Byer, and V. Gopalan, “Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials,” Opt. Express 16(9), 5965–5973 (2008).
[CrossRef] [PubMed]

A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr(2+):ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006).
[CrossRef] [PubMed]

X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
[CrossRef] [PubMed]

C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
[CrossRef] [PubMed]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[CrossRef]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[CrossRef] [PubMed]

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping,” Opt. Express 13(16), 6212–6216 (2005).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

Opt. Lett. (6)

J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
[CrossRef] [PubMed]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y(2)O(3) ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29(11), 1212–1214 (2004).
[CrossRef] [PubMed]

J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004).
[CrossRef] [PubMed]

N. Ohlsson, M. Nilsson, S. Kröll, and R. K. Mohan, “Long-time-storage mechanism for Tm:YAG in a magnetic field,” Opt. Lett. 28(6), 450–452 (2003).
[CrossRef] [PubMed]

Top. Appl. Phys. (1)

E. Sorokin, “Solid-State Materials for Few-Cycle Pulse Generation and Amplification,” Top. Appl. Phys. 95, 3–73 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The transmission spectrum of YAG ceramic and YAG crystal.

Fig. 2
Fig. 2

The emission spectrum of Tm:YAG ceramic and Tm:YAG crystal.

Fig. 3
Fig. 3

The schematic diagram of the experimental setup

Fig. 4
Fig. 4

(a) The output power versus the incident absorbed pump power. (b) Laser spectrum of Tm:YAG ceramic.

Fig. 5
Fig. 5

Pulse width and pulse energy versus

Fig. 6
Fig. 6

A typical pulse shape with the pulse width of 69 ns the incident absorbed pump power

Metrics