Abstract

Ultrafast science is inherently, due to the lack of fast enough detectors and electronics, based on nonlinear interactions. Typically, however, nonlinear measurements require significant powers and often operate in a limited spectral range. Here we overcome the difficulties of ultraweak ultrafast measurements by precision time-domain localization of spectral components. We utilize this for linear self-referenced characterization of pulse trains having ∼ 1 photon per pulse, a regime in which nonlinear techniques are impractical, at a temporal resolution of ∼ 10 fs. This technique does not only set a new scale of sensitivity in ultrashort pulse characterization, but is also applicable in any spectral range from the near-infrared to the deep UV.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Diddams, J. Bergquist, S. Jefferts, and C. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318 (2004).
    [CrossRef] [PubMed]
  2. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
    [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
    [CrossRef] [PubMed]
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
    [CrossRef] [PubMed]
  5. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nature Photon. (2010).
    [CrossRef]
  6. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
    [CrossRef]
  7. Q1I. A. Walmsley, and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1, 308–437 (2009).
    [CrossRef]
  8. R. Trebino, and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
    [CrossRef]
  9. C. Iaconis, and I. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
    [CrossRef]
  10. R. Trebino, ed., Frequency - resolved optical gating: The Measurement of ultrashort laser pulses (Kluwer Academic, 2002).
    [CrossRef]
  11. C. Dorrer, and I. Kang, “Linear self-referencing techniques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25, A1–A12 (2008).
    [CrossRef]
  12. D. Reid, and J. Harvey, “Linear Spectrograms Using Electrooptic Modulators,” IEEE Photon. Technol. Lett. 19, 535–537 (2007).
    [CrossRef]
  13. K. Mori, T. Morioka, and M. Saruwatari, “Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 mu;m compact laser source,” IEEE Trans. Instrum. Meas. 44, 712–715 (1995).
    [CrossRef]
  14. C. Dorrer, and J. Bromage, “High-sensitivity optical pulse characterization using Sagnac electro-optic spectral shearing interferometry,” Opt. Lett. 35, 1353–1355 (2010).
    [CrossRef] [PubMed]
  15. I. Kang, C. Dorrer, and F. Quochi, “Implementation of electro-optic spectral shearing interferometry for ultrashort pulse characterization,” Opt. Lett. 28, 2264–2266 (2003).
    [CrossRef] [PubMed]
  16. P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10, 206–212 (2004).
    [CrossRef]
  17. S. Moon, and D. Kim, “Reflectometric fiber dispersion measurement using a supercontinuum pulse source,” IEEE Photon. Technol. Lett. 21, 1262–1264 (2009).
    [CrossRef]
  18. S. Prein, S. Diddams, and J. Diels, “Complete characterization of femtosecond pulses using an all-electronic detector,” Opt. Commun. 123, 567–573 (1996).
    [CrossRef]
  19. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
    [CrossRef] [PubMed]
  20. D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatialspectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997).
    [CrossRef]
  21. M. Beck, C. Dorrer, and I. Walmsley, “Joint quantum measurement using unbalanced array detection,” Phys. Rev. Lett. 87, 253601 (2001).
    [CrossRef] [PubMed]
  22. H. Miao, S.-D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power secondharmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B 25, A41–A53 (2008).
    [CrossRef]
  23. J. L. A. Chilla, and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991).
    [CrossRef] [PubMed]
  24. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  25. H. Cramer, Mathematical methods of statistics (Princeton Univ Pr, 1999).
  26. D. W. Allan, J. H. Shoaf, and D. Halford, “Statistics of Time and Frequency Data Analysis,” in “Time and Frequency: Theory and Fundamentals,” B. E. Blair, ed. (1974), pp. 151– +.
  27. Optical Glass (Schott Glass Technologies Inc., Duryea, Pennsylvania, 1984).
  28. N. Dudovich, D. Oron, and Y. Silberberg, “Coherent Transient Enhancement of Optically Induced Resonant Transitions,” Phys. Rev. Lett. 88, 123004 (2002).
    [CrossRef] [PubMed]
  29. K. Weber, and K. Niemax, “Self-broadening and shift of Doppler-free two-photon lines of Rb,” Opt. Commun. 31, 52–56 (1979).
    [CrossRef]
  30. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [CrossRef]
  31. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  32. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature 453, 757–760 (2008).
    [CrossRef] [PubMed]

2010 (1)

C. Dorrer, and J. Bromage, “High-sensitivity optical pulse characterization using Sagnac electro-optic spectral shearing interferometry,” Opt. Lett. 35, 1353–1355 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Moon, and D. Kim, “Reflectometric fiber dispersion measurement using a supercontinuum pulse source,” IEEE Photon. Technol. Lett. 21, 1262–1264 (2009).
[CrossRef]

Q1I. A. Walmsley, and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1, 308–437 (2009).
[CrossRef]

2008 (3)

C. Dorrer, and I. Kang, “Linear self-referencing techniques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25, A1–A12 (2008).
[CrossRef]

H. Miao, S.-D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power secondharmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B 25, A41–A53 (2008).
[CrossRef]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

2007 (1)

D. Reid, and J. Harvey, “Linear Spectrograms Using Electrooptic Modulators,” IEEE Photon. Technol. Lett. 19, 535–537 (2007).
[CrossRef]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

2004 (2)

S. Diddams, J. Bergquist, S. Jefferts, and C. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318 (2004).
[CrossRef] [PubMed]

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10, 206–212 (2004).
[CrossRef]

2003 (1)

I. Kang, C. Dorrer, and F. Quochi, “Implementation of electro-optic spectral shearing interferometry for ultrashort pulse characterization,” Opt. Lett. 28, 2264–2266 (2003).
[CrossRef] [PubMed]

2002 (3)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Coherent Transient Enhancement of Optically Induced Resonant Transitions,” Phys. Rev. Lett. 88, 123004 (2002).
[CrossRef] [PubMed]

2001 (1)

M. Beck, C. Dorrer, and I. Walmsley, “Joint quantum measurement using unbalanced array detection,” Phys. Rev. Lett. 87, 253601 (2001).
[CrossRef] [PubMed]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

1998 (1)

C. Iaconis, and I. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
[CrossRef]

1997 (2)

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatialspectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

1996 (2)

S. Prein, S. Diddams, and J. Diels, “Complete characterization of femtosecond pulses using an all-electronic detector,” Opt. Commun. 123, 567–573 (1996).
[CrossRef]

D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
[CrossRef] [PubMed]

1995 (1)

K. Mori, T. Morioka, and M. Saruwatari, “Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 mu;m compact laser source,” IEEE Trans. Instrum. Meas. 44, 712–715 (1995).
[CrossRef]

1993 (1)

R. Trebino, and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
[CrossRef]

1991 (1)

J. L. A. Chilla, and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991).
[CrossRef] [PubMed]

1979 (1)

K. Weber, and K. Niemax, “Self-broadening and shift of Doppler-free two-photon lines of Rb,” Opt. Commun. 31, 52–56 (1979).
[CrossRef]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Beck, M.

M. Beck, C. Dorrer, and I. Walmsley, “Joint quantum measurement using unbalanced array detection,” Phys. Rev. Lett. 87, 253601 (2001).
[CrossRef] [PubMed]

Bergquist, J.

S. Diddams, J. Bergquist, S. Jefferts, and C. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318 (2004).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Bowie, J. L.

D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
[CrossRef] [PubMed]

Bromage, J.

C. Dorrer, and J. Bromage, “High-sensitivity optical pulse characterization using Sagnac electro-optic spectral shearing interferometry,” Opt. Lett. 35, 1353–1355 (2010).
[CrossRef] [PubMed]

Chilla, J. L. A.

J. L. A. Chilla, and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
[CrossRef] [PubMed]

Diddams, S.

S. Diddams, J. Bergquist, S. Jefferts, and C. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318 (2004).
[CrossRef] [PubMed]

S. Prein, S. Diddams, and J. Diels, “Complete characterization of femtosecond pulses using an all-electronic detector,” Opt. Commun. 123, 567–573 (1996).
[CrossRef]

Diels, J.

S. Prein, S. Diddams, and J. Diels, “Complete characterization of femtosecond pulses using an all-electronic detector,” Opt. Commun. 123, 567–573 (1996).
[CrossRef]

Dorrer, C.

C. Dorrer, and J. Bromage, “High-sensitivity optical pulse characterization using Sagnac electro-optic spectral shearing interferometry,” Opt. Lett. 35, 1353–1355 (2010).
[CrossRef] [PubMed]

Q1I. A. Walmsley, and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1, 308–437 (2009).
[CrossRef]

C. Dorrer, and I. Kang, “Linear self-referencing techniques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25, A1–A12 (2008).
[CrossRef]

I. Kang, C. Dorrer, and F. Quochi, “Implementation of electro-optic spectral shearing interferometry for ultrashort pulse characterization,” Opt. Lett. 28, 2264–2266 (2003).
[CrossRef] [PubMed]

M. Beck, C. Dorrer, and I. Walmsley, “Joint quantum measurement using unbalanced array detection,” Phys. Rev. Lett. 87, 253601 (2001).
[CrossRef] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Coherent Transient Enhancement of Optically Induced Resonant Transitions,” Phys. Rev. Lett. 88, 123004 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef]

Emplit, P.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10, 206–212 (2004).
[CrossRef]

Fejer, M. M.

H. Miao, S.-D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power secondharmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B 25, A41–A53 (2008).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
[CrossRef] [PubMed]

Froehly, C.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10, 206–212 (2004).
[CrossRef]

Haelterman, M.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10, 206–212 (2004).
[CrossRef]

Harvey, J.

D. Reid, and J. Harvey, “Linear Spectrograms Using Electrooptic Modulators,” IEEE Photon. Technol. Lett. 19, 535–537 (2007).
[CrossRef]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Iaconis, C.

C. Iaconis, and I. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
[CrossRef]

Jefferts, S.

S. Diddams, J. Bergquist, S. Jefferts, and C. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318 (2004).
[CrossRef] [PubMed]

Jennings, R. T.

D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
[CrossRef] [PubMed]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

R. Trebino, and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
[CrossRef]

Kang, I.

C. Dorrer, and I. Kang, “Linear self-referencing techniques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25, A1–A12 (2008).
[CrossRef]

I. Kang, C. Dorrer, and F. Quochi, “Implementation of electro-optic spectral shearing interferometry for ultrashort pulse characterization,” Opt. Lett. 28, 2264–2266 (2003).
[CrossRef] [PubMed]

Kim, D.

S. Moon, and D. Kim, “Reflectometric fiber dispersion measurement using a supercontinuum pulse source,” IEEE Photon. Technol. Lett. 21, 1262–1264 (2009).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kockaert, P.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10, 206–212 (2004).
[CrossRef]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
[CrossRef] [PubMed]

Langrock, C.

H. Miao, S.-D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power secondharmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B 25, A41–A53 (2008).
[CrossRef]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Martinez, O. E.

J. L. A. Chilla, and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991).
[CrossRef] [PubMed]

Meshulach, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatialspectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997).
[CrossRef]

Miao, H.

H. Miao, S.-D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power secondharmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B 25, A41–A53 (2008).
[CrossRef]

Moon, S.

S. Moon, and D. Kim, “Reflectometric fiber dispersion measurement using a supercontinuum pulse source,” IEEE Photon. Technol. Lett. 21, 1262–1264 (2009).
[CrossRef]

Mori, K.

K. Mori, T. Morioka, and M. Saruwatari, “Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 mu;m compact laser source,” IEEE Trans. Instrum. Meas. 44, 712–715 (1995).
[CrossRef]

Morioka, T.

K. Mori, T. Morioka, and M. Saruwatari, “Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 mu;m compact laser source,” IEEE Trans. Instrum. Meas. 44, 712–715 (1995).
[CrossRef]

Niemax, K.

K. Weber, and K. Niemax, “Self-broadening and shift of Doppler-free two-photon lines of Rb,” Opt. Commun. 31, 52–56 (1979).
[CrossRef]

Oates, C.

S. Diddams, J. Bergquist, S. Jefferts, and C. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318 (2004).
[CrossRef] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Coherent Transient Enhancement of Optically Induced Resonant Transitions,” Phys. Rev. Lett. 88, 123004 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Prein, S.

S. Prein, S. Diddams, and J. Diels, “Complete characterization of femtosecond pulses using an all-electronic detector,” Opt. Commun. 123, 567–573 (1996).
[CrossRef]

Quochi, F.

I. Kang, C. Dorrer, and F. Quochi, “Implementation of electro-optic spectral shearing interferometry for ultrashort pulse characterization,” Opt. Lett. 28, 2264–2266 (2003).
[CrossRef] [PubMed]

Reid, D.

D. Reid, and J. Harvey, “Linear Spectrograms Using Electrooptic Modulators,” IEEE Photon. Technol. Lett. 19, 535–537 (2007).
[CrossRef]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Roussev, R. V.

H. Miao, S.-D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power secondharmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B 25, A41–A53 (2008).
[CrossRef]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Saruwatari, M.

K. Mori, T. Morioka, and M. Saruwatari, “Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 mu;m compact laser source,” IEEE Trans. Instrum. Meas. 44, 712–715 (1995).
[CrossRef]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Coherent Transient Enhancement of Optically Induced Resonant Transitions,” Phys. Rev. Lett. 88, 123004 (2002).
[CrossRef] [PubMed]

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatialspectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997).
[CrossRef]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
[CrossRef] [PubMed]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[CrossRef] [PubMed]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
[CrossRef] [PubMed]

R. Trebino, and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
[CrossRef]

Walmsley, I.

M. Beck, C. Dorrer, and I. Walmsley, “Joint quantum measurement using unbalanced array detection,” Phys. Rev. Lett. 87, 253601 (2001).
[CrossRef] [PubMed]

C. Iaconis, and I. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
[CrossRef]

Walmsley, I. A.

Q1I. A. Walmsley, and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1, 308–437 (2009).
[CrossRef]

D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
[CrossRef] [PubMed]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[CrossRef] [PubMed]

Weber, K.

K. Weber, and K. Niemax, “Self-broadening and shift of Doppler-free two-photon lines of Rb,” Opt. Commun. 31, 52–56 (1979).
[CrossRef]

Weiner, A. M.

H. Miao, S.-D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power secondharmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B 25, A41–A53 (2008).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Xie, X. S.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Yang, S.-D.

H. Miao, S.-D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power secondharmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B 25, A41–A53 (2008).
[CrossRef]

Yelin, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatialspectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997).
[CrossRef]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Adv. Opt. Photon. (1)

Q1I. A. Walmsley, and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1, 308–437 (2009).
[CrossRef]

Biophys. J. (1)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10, 206–212 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Moon, and D. Kim, “Reflectometric fiber dispersion measurement using a supercontinuum pulse source,” IEEE Photon. Technol. Lett. 21, 1262–1264 (2009).
[CrossRef]

D. Reid, and J. Harvey, “Linear Spectrograms Using Electrooptic Modulators,” IEEE Photon. Technol. Lett. 19, 535–537 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

K. Mori, T. Morioka, and M. Saruwatari, “Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 mu;m compact laser source,” IEEE Trans. Instrum. Meas. 44, 712–715 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

R. Trebino, and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
[CrossRef]

J. Opt. Soc. Am. B (3)

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatialspectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997).
[CrossRef]

H. Miao, S.-D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power secondharmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B 25, A41–A53 (2008).
[CrossRef]

C. Dorrer, and I. Kang, “Linear self-referencing techniques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25, A1–A12 (2008).
[CrossRef]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Nature (2)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Opt. Commun. (2)

K. Weber, and K. Niemax, “Self-broadening and shift of Doppler-free two-photon lines of Rb,” Opt. Commun. 31, 52–56 (1979).
[CrossRef]

S. Prein, S. Diddams, and J. Diels, “Complete characterization of femtosecond pulses using an all-electronic detector,” Opt. Commun. 123, 567–573 (1996).
[CrossRef]

Opt. Lett. (5)

D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
[CrossRef] [PubMed]

C. Dorrer, and J. Bromage, “High-sensitivity optical pulse characterization using Sagnac electro-optic spectral shearing interferometry,” Opt. Lett. 35, 1353–1355 (2010).
[CrossRef] [PubMed]

I. Kang, C. Dorrer, and F. Quochi, “Implementation of electro-optic spectral shearing interferometry for ultrashort pulse characterization,” Opt. Lett. 28, 2264–2266 (2003).
[CrossRef] [PubMed]

C. Iaconis, and I. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
[CrossRef]

J. L. A. Chilla, and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

M. Beck, C. Dorrer, and I. Walmsley, “Joint quantum measurement using unbalanced array detection,” Phys. Rev. Lett. 87, 253601 (2001).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Coherent Transient Enhancement of Optically Induced Resonant Transitions,” Phys. Rev. Lett. 88, 123004 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Science (2)

S. Diddams, J. Bergquist, S. Jefferts, and C. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318 (2004).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Other (5)

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nature Photon. (2010).
[CrossRef]

R. Trebino, ed., Frequency - resolved optical gating: The Measurement of ultrashort laser pulses (Kluwer Academic, 2002).
[CrossRef]

H. Cramer, Mathematical methods of statistics (Princeton Univ Pr, 1999).

D. W. Allan, J. H. Shoaf, and D. Halford, “Statistics of Time and Frequency Data Analysis,” in “Time and Frequency: Theory and Fundamentals,” B. E. Blair, ed. (1974), pp. 151– +.

Optical Glass (Schott Glass Technologies Inc., Duryea, Pennsylvania, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The characterized pulse is passed through a 4f pulse shaper selecting a spectral component, and is detected by a single photon counting APD. One replica of the original pulse is used as a trigger signal for the TCSPC module, while the other, serving as an additional reference, is directed into the signal detector. The inset shows a sample histogram with the two peaks corresponding to the signal and the reference pulses.

Fig. 2
Fig. 2

Allan variance. The plot shows the standard deviation of the measured pulse arrival time as a function of the integration time. Two replicas of the same pulse separated by a constant delay were used as the signal and the reference, each attenuated to 1 MHz detection rate. The arrival time of the signal pulse was measured by finding the absolute position of the peak in the histogram (magenta) and by finding its position relative to the reference pulse (blue). The dashed black line represents the shot noise limit as given by Eq. (1). At short integration times, the relative timing standard deviation scales as 2 / N 45 ps, which is 15% larger than the shot noise limit.

Fig. 3
Fig. 3

Characterization of a 85 fs transform limited pulse and a pulse chirped by a 152 mm long F3 glass slab. (a) Density plot of a typical raw measurement trace featuring two peaks, the reference and the signal. The inset shows a cross section of the signal peak with FWHM of about 70 ps. (b) Measured delays of the spectral components for the transform limited and the chirped pulse (represented by the blue and red dots, respectively). The dashed black and cyan lines show the delays derived from the FROG measurements, and the dashed green line represents Sellmeier equation. The gray solid curve in the lower part of the plot shows the spectrum of the pulses in arbitrary units.

Fig. 4
Fig. 4

Measurement of the spectral delay of pulses passed through a Rb cell. (a) Measured delays of spectral components at 100°C (blue) and 210°C (red). The integration time was 4s per point at 100°C and 8s per point at 210°C. (b) A magnified view of the same (markers) fitted with a resonance delay profile (lines). (c) Normalized spectrum of the transmitted pulse at 100°C (blue) and 210°C (red) measured at a resolution of 0.05 nm. (The dashed black line shows the resonant absorbtion profile corresponding to the fit of 210°C spectral delay data.)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ min 2 = Δ 2 N ( i ( f ( t i + Δ / 2 ) f ( t i + Δ / 2 ) ) 2 t i Δ / 2 t i + Δ / 2 f ( t ) dt ) 1

Metrics