Abstract

Fast characterization of pulsed spontaneous parametric down conversion (SPDC) sources is important for applications in quantum information processing and communications. We propose a simple method to perform this task, which only requires measuring the counts on the two output channels and the coincidences between them, as well as modeling the filter used to reduce the source bandwidth. The proposed method is experimentally tested and used for a complete evaluation of SPDC sources (pair emission probability, total losses, and fidelity) of various bandwidths. This method can find applications in the setting up of SPDC sources and in the continuous verification of the quality of quantum communication links.

© 2011 OSA

Full Article  |  PDF Article
Related Articles
A wavelength-tunable fiber-coupled source of narrowband entangled photons

Alessandro Fedrizzi, Thomas Herbst, Andreas Poppe, Thomas Jennewein, and Anton Zeilinger
Opt. Express 15(23) 15377-15386 (2007)

Entanglement swapping using telecom-band photons generated in fibers

Hiroki Takesue and Benjamin Miquel
Opt. Express 17(13) 10748-10756 (2009)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  2. Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
    [Crossref] [PubMed]
  3. H. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
    [Crossref]
  4. D. Collins, N. Gisin, and H. de Riedmatten, “Quantum relays for long distance quantum cryptography,” J. Mod. Opt. 52, 735–753 (2005).
    [Crossref]
  5. P. Aboussan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (R) (2010) and references therein.
    [Crossref]
  6. H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [Crossref]
  7. L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref] [PubMed]
  8. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007)
  9. K. Hammerer, A. S. Sorensen, and E. S. Polzic, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010) and references therein.
    [Crossref]
  10. A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221–1222 (2009).
    [Crossref] [PubMed]
  11. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009)
    [Crossref]
  12. H. Y. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys.Rev. A 50, 23–28 (1994).
    [Crossref] [PubMed]
  13. P. G. Kwiat, K. Mattle, H. Weifurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref] [PubMed]
  14. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
    [Crossref]
  15. H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
    [Crossref]
  16. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
    [Crossref] [PubMed]
  17. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin modulated biphotons from cavity enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
    [Crossref] [PubMed]
  18. L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
    [Crossref] [PubMed]
  19. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
    [Crossref] [PubMed]
  20. A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55–57 (2009).
    [Crossref]
  21. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Baveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–168 (2004).
    [Crossref]
  22. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzic, “High purity bright single photon source,” Opt. Express 15, 7940–7949 (2007).
    [Crossref] [PubMed]
  23. A. Ling, J. Chen, J. Fan, and A. Migdall, “Mode expansion and Bragg filtering for a high-fidelity fiber-based photon-pair source,” Opt. Express 17, 21302–21312 (2009).
    [Crossref] [PubMed]
  24. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001)
    [Crossref]
  25. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991)
    [Crossref] [PubMed]
  26. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002)
    [Crossref]
  27. Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
    [Crossref]
  28. R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detectors,” Appl. Phys. Lett. 89, 241129 (2006).
    [Crossref]

2010 (2)

P. Aboussan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (R) (2010) and references therein.
[Crossref]

K. Hammerer, A. S. Sorensen, and E. S. Polzic, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010) and references therein.
[Crossref]

2009 (5)

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221–1222 (2009).
[Crossref] [PubMed]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009)
[Crossref]

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55–57 (2009).
[Crossref]

A. Ling, J. Chen, J. Fan, and A. Migdall, “Mode expansion and Bragg filtering for a high-fidelity fiber-based photon-pair source,” Opt. Express 17, 21302–21312 (2009).
[Crossref] [PubMed]

2008 (1)

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

2007 (2)

J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzic, “High purity bright single photon source,” Opt. Express 15, 7940–7949 (2007).
[Crossref] [PubMed]

H. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

2006 (3)

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin modulated biphotons from cavity enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[Crossref] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detectors,” Appl. Phys. Lett. 89, 241129 (2006).
[Crossref]

2005 (1)

D. Collins, N. Gisin, and H. de Riedmatten, “Quantum relays for long distance quantum cryptography,” J. Mod. Opt. 52, 735–753 (2005).
[Crossref]

2004 (2)

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Baveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–168 (2004).
[Crossref]

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[Crossref]

2002 (2)

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002)
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

2001 (3)

Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref] [PubMed]

L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001)
[Crossref]

1999 (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

1998 (1)

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weifurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

1994 (1)

H. Y. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys.Rev. A 50, 23–28 (1994).
[Crossref] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991)
[Crossref] [PubMed]

1905 (1)

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007)

Aboussan, P.

P. Aboussan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (R) (2010) and references therein.
[Crossref]

Afzelius, M.

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007)

Alibart, O.

P. Aboussan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (R) (2010) and references therein.
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Baveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–168 (2004).
[Crossref]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
[Crossref] [PubMed]

Alley, C. O.

H. Y. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys.Rev. A 50, 23–28 (1994).
[Crossref] [PubMed]

Amari, A.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Baldi, P.

P. Aboussan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (R) (2010) and references therein.
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Baveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–168 (2004).
[Crossref]

Bao, X.-H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Baveratos, A.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Baveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–168 (2004).
[Crossref]

Beaudoux, F.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Berger, V.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Beveratos, A.

H. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

Briegel, H.

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Chanelière, T.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Chen, J.

Chen, Z.-B.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Cirac, J. I.

L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Collins, D.

D. Collins, N. Gisin, and H. de Riedmatten, “Quantum relays for long distance quantum cryptography,” J. Mod. Opt. 52, 735–753 (2005).
[Crossref]

de Riedmatten, H.

D. Collins, N. Gisin, and H. de Riedmatten, “Quantum relays for long distance quantum cryptography,” J. Mod. Opt. 52, 735–753 (2005).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002)
[Crossref]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007)

Duan, L. M.

L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Ducci, S.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Dür, W.

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991)
[Crossref] [PubMed]

Eschner, J.

Fan, J.

Fasel, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Baveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–168 (2004).
[Crossref]

Fulconis, J.

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
[Crossref] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009)
[Crossref]

Gisin, N.

H. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

D. Collins, N. Gisin, and H. de Riedmatten, “Quantum relays for long distance quantum cryptography,” J. Mod. Opt. 52, 735–753 (2005).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Baveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–168 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002)
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007)

Goldner, Ph.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Guillot-Noël, O.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Haase, A.

Habif, J. L.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detectors,” Appl. Phys. Lett. 89, 241129 (2006).
[Crossref]

Hadfield, R. H.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detectors,” Appl. Phys. Lett. 89, 241129 (2006).
[Crossref]

Halder, H.

H. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

Hammerer, K.

K. Hammerer, A. S. Sorensen, and E. S. Polzic, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010) and references therein.
[Crossref]

Horikiri, T.

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001)
[Crossref]

Kiess, T. E.

H. Y. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys.Rev. A 50, 23–28 (1994).
[Crossref] [PubMed]

Kim, Y.

Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref] [PubMed]

Kobayashi, T.

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[Crossref]

Kröll, S.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Kuklewicz, C. E.

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin modulated biphotons from cavity enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[Crossref] [PubMed]

Kulik, S. P.

Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref] [PubMed]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001)
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weifurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Lanco, L.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Le Du, Y.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Le Gouët, J.-L.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Lejay, J.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Leo, G.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Likforman, J.-P.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Ling, A.

Lukin, M.

L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Marcadet, X.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002)
[Crossref]

Matthews, J. C. F.

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221–1222 (2009).
[Crossref] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weifurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Migdall, A.

Mitchell, M. W.

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001)
[Crossref]

Nam, S. W.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detectors,” Appl. Phys. Lett. 89, 241129 (2006).
[Crossref]

Neergaard-Nielsen, J. S.

Nielsen, B. M.

O’Brien, J. L.

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221–1222 (2009).
[Crossref] [PubMed]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009)
[Crossref]

Ostrowsky, D. B.

P. Aboussan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (R) (2010) and references therein.
[Crossref]

Pan, J.-W.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Piro, N.

Politi, A.

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221–1222 (2009).
[Crossref] [PubMed]

Polzic, E. S.

K. Hammerer, A. S. Sorensen, and E. S. Polzic, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010) and references therein.
[Crossref]

J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzic, “High purity bright single photon source,” Opt. Express 15, 7940–7949 (2007).
[Crossref] [PubMed]

Qian, Y.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Rarity, J.

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
[Crossref] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Rippe, L.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Rubin, M. H.

H. Y. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys.Rev. A 50, 23–28 (1994).
[Crossref] [PubMed]

Russell, P.

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
[Crossref] [PubMed]

Sangouard, N.

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007)

Scarani, V.

H. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002)
[Crossref]

Schlafer, J.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detectors,” Appl. Phys. Lett. 89, 241129 (2006).
[Crossref]

Schwall, R. E.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detectors,” Appl. Phys. Lett. 89, 241129 (2006).
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weifurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

H. Y. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys.Rev. A 50, 23–28 (1994).
[Crossref] [PubMed]

Shapiro, J. H.

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin modulated biphotons from cavity enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[Crossref] [PubMed]

Shih, H. Y.

H. Y. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys.Rev. A 50, 23–28 (1994).
[Crossref] [PubMed]

Shih, Y.

Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weifurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Simon, C.

H. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007)

Sorensen, A. S.

K. Hammerer, A. S. Sorensen, and E. S. Polzic, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010) and references therein.
[Crossref]

Takahashi, H.

Tanzilli, S.

P. Aboussan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (R) (2010) and references therein.
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Baveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–168 (2004).
[Crossref]

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002)
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

van Houwelingen, J. A. W.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Vistnes, A. I.

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009)
[Crossref]

Wadsworth, W.

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
[Crossref] [PubMed]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Walther, A.

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

Wang, H.

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[Crossref]

Weifurter, H.

P. G. Kwiat, K. Mattle, H. Weifurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001)
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Wong, F. N. C.

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin modulated biphotons from cavity enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[Crossref] [PubMed]

Yang, J.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Yang, T.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Zbinden, H.

H. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Baveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–168 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002)
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007)

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weifurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Zhang, H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Zoller, P.

L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Appl. Phys. Lett. (1)

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detectors,” Appl. Phys. Lett. 89, 241129 (2006).
[Crossref]

J. Mod. Opt. (1)

D. Collins, N. Gisin, and H. de Riedmatten, “Quantum relays for long distance quantum cryptography,” J. Mod. Opt. 52, 735–753 (2005).
[Crossref]

Nat. Photonics (1)

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009)
[Crossref]

Nat. Phys. (1)

H. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[Crossref]

Nature (1)

L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

New J. Phys. (1)

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Baveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–168 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (6)

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002)
[Crossref]

Ph. Goldner, O. Guillot-Noël, F. Beaudoux, Y. Le Du, J. Lejay, T. Chanelière, J.-L. Le Gouët, L. Rippe, A. Amari, A. Walther, and S. Kröll, “Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid,” Phys. Rev. A 79, 033809 (2009).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001)
[Crossref]

P. Aboussan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (R) (2010) and references therein.
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[Crossref]

Phys. Rev. Lett. (8)

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin modulated biphotons from cavity enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[Crossref] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weifurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref] [PubMed]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991)
[Crossref] [PubMed]

Phys.Rev. A (1)

H. Y. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys.Rev. A 50, 23–28 (1994).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

K. Hammerer, A. S. Sorensen, and E. S. Polzic, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010) and references therein.
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Science (1)

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221–1222 (2009).
[Crossref] [PubMed]

Other (1)

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic setup of the quantum link. FC: fiber coupler, DA, DB: single-photon avalanche photodiodes. The SPDC crystal is pumped by a pulsed laser.

Fig. 2
Fig. 2

Principle of the evaluation of I2 for the simple case of a rectangular filter function. The shaded area is proportional to the effective value of I2. When the filter is centered at the degeneracy frequency (zero detuning), I2 is maximum (a). When detuning is non-zero, I2 is reduced : some photons within the filter bandwidth have their twins transmitted (b), while this is not the case for others (c).

Fig. 3
Fig. 3

Experimental setup. See text for explanation of acronyms.

Fig. 4
Fig. 4

Comparison of the theoretical and experimental transmission (a) and normalized value of I2 (b) plotted as a function of frequency detuning with respect to the filter center frequency νF, for two different filtering devices: a DWDM filter {4} and a DWDM filter plus a FP etalon {5}.

Fig. 5
Fig. 5

Performance of our SPDC source using a DWDM filter.

Tables (1)

Tables Icon

Table 1 Filter bandwidth and I1/I2max for various filters where I2max = I2(νp/2 – νF = 0). DWDM stands for Dense Wavelength Division Multiplexing add/drop filter, FP stands for Fabry-Pérot etalon

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

P I = 2 p 0 I 1 X 1 K T + P N I I = A , B ,
P C = P TC + P AC + P NAB .
P TC = 2 p 0 I 2 X A X B K T .
P AC = 4 ( p 0 I 1 ) 2 X A X B K T 2 = ( P A P NA ) ( P B P NB ) .
P NAB = ( P A P NA ) P NB + ( P B P NB ) P NA + P NA P NB .
K T = T / 2 + T / 2 e t 2 Δ t 2 dt / + e t 2 Δ t 2 dt .
I 1 = + F ( ν ν F ) d ν
I 2 = + F ( ν ν F ) F ( ν p ν ν F ) d ν = F * F ( ν p 2 ν F ) .
p 0 I 1 = I 2 2 I 1 K T P AC P TC = I 2 2 I 1 K T ( P A P NA ) ( P B P NB ) ( P C P AC P NAB ) ,
X I = I 1 I 2 P TC P J P N J = I 1 I 2 ( P C P AC P NAB ) P J P N J ( J = B , A for I = A , B ) .
F sys = 1 1 + 2 P AC + P NAB P TC .
F SPDC = 1 1 + 2 P AC P TC .
F SPDC = 1 1 + 4 ( p 0 I 1 ) K T I 1 I 2 ,
𝒫 N ( n A , n B ) = C 2 N 2 N n A n B ( 1 x A x B ) 2 N n A n B C n A + n B n A x A n A x B n B ,
𝒫 1 ( n A 1 , n B ) = 𝒫 1 ( 2 , 0 ) + 𝒫 1 ( 1 , 1 ) + 𝒫 1 ( 1 , 0 ) = x A ( 2 x A ) .
𝒫 1 ( n A 1 , n B ) 2 x A .
P I = 2 p 0 K T X I + F ( ν ν F ) G ( ν ) d ν + P N I = 2 p 0 K T X I I 1 + P N I ,
P C = P TC + P AC + P NAB .
P TC = 2 p 0 K T X A X B + F ( ν ν F ) G ( ν ) F ( ν p ν ν F ) G ( ν p ν ) d ν = 2 p 0 K T X A X B I 2 ,
𝒫 2 ( n A 1 , n B 1 ) = [ 𝒫 2 ( 3 , 1 ) + 𝒫 2 ( 1 , 3 ) + 𝒫 2 ( 2 , 2 ) + 𝒫 2 ( 2 , 1 ) + 𝒫 2 ( 1 , 2 ) + 𝒫 2 ( 1 , 1 ) ] = [ 6 6 ( x A + x B ) + 2 ( x A 2 + x B 2 ) + 3 x A x B ] x A x B 6 x A x B .
P AC = 2 3 p 0 2 K T 2 6 [ X A I 1 ] [ X B I 1 ] = 4 p 0 2 K T 2 X A X B I 1 2 .
P NAB = ( P A P NA ) P NB + ( P B P NB ) P NA + P NA P NB

Metrics