Abstract

Enhanced Stoke Raman scattering of large-area vertically aligned Si nanorod surface etched by metal-particle-catalytic is investigated. By enlarging the surface area with lengthening Si nanorods, the linear enhancement on Stoke Raman scattering intensity at 520 cm−1 is modeled to show well correlation with increasing quantity of surface Si dangling bonds. With Si nanorod length increasing from 0.19 to 2.73 μm, the Raman peaks of the as-etched and oxidized samples gradually shift from −4 cm−1 and from −4.5 cm−1 associated with their linewidth broadening from 3 to 9 cm−1 and from 7 to 18 cm−1, respectively. The peak intensity of Raman scattering signal from Si nanorod could be enhanced with the increase of interaction area as the number of phonon mode directly corresponds to the tetrahedrally coordinated Si vibrations in the bulk crystal lattice. The asymmetric linewidth broadening and corresponding Raman peak shift is affected by the strained Si nanorod surface caused by etching and the crystal quality. Fourier transform infrared spectroscopy corroborates the dependency between nanorod length and Si-O-Si stretching mode absorption (at 1097 cm−1) on oxidized Si nanorod surface, elucidating the increased transformation of surface dangling bonds to Si-O-Si bonds for passivating Si nanorods and attenuating Stoke Raman scattering after oxidation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008).
    [CrossRef] [PubMed]
  2. D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
    [CrossRef]
  3. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
    [CrossRef] [PubMed]
  4. G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
    [CrossRef]
  5. M. A. Ochsenkühn, P. R. T. Jess, H. Stoquert, K. Dholakia, and C. J. Campbell, “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development,” ACS Nano 3(11), 3613–3621 (2009).
    [CrossRef] [PubMed]
  6. P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
    [CrossRef] [PubMed]
  7. I. Park, Z. Li, X. Li, A. P. Pisano, and R. S. Williams, “Towards the silicon nanowire-based sensor for intracellular biochemical detection,” Biosens. Bioelectron. 22(9-10), 2065–2070 (2007).
    [CrossRef]
  8. J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009).
    [CrossRef] [PubMed]
  9. T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
    [CrossRef] [PubMed]
  10. G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
    [CrossRef] [PubMed]
  11. L. Sirleto, V. Raghunatan, A. Rossi, and B. Jalali, “Raman emission in porous silicon at 1.54 μm,” Electron. Lett. 40(19), 1221–1222 (2004).
    [CrossRef]
  12. Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Appl. Phys. Lett. 60(17), 2086–2088 (1992).
    [CrossRef]
  13. L. Sirleto, M. A. Ferrara, B. Jalali, and I. Rendina, “Spontaneous Raman emission in porous silicon at 1.5 µm and prospects for a Raman amplifier,” J. Opt. A, Pure Appl. Opt. 8(7), S574–S577 (2006).
    [CrossRef]
  14. B. Li, D. Yu, and S. L. Zhang, “Raman spectral study of silicon nanowires,” Phys. Rev. B 59(3), 1645–1648 (1999).
    [CrossRef]
  15. W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
    [CrossRef]
  16. K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, and T. Kurosawa, “Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 11), 6742–6747 (2003).
    [CrossRef]
  17. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006).
    [CrossRef] [PubMed]
  18. W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
    [CrossRef] [PubMed]
  19. S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, “Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy,” ACS Nano 3(12), 3845–3853 (2009).
    [CrossRef] [PubMed]
  20. B. Ren, F. M. Liu, J. Xie, B. W. Mao, Y. B. Zu, and Z. Q. Tian, “In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions,” Appl. Phys. Lett. 72(8), 933–935 (1998).
    [CrossRef]
  21. L. Z. Liu, X. L. Wu, Z. Y. Zhang, T. H. Li, and P. K. Chu, “Raman investigation of oxidation mechanism of silicon nanowires,” Appl. Phys. Lett. 95(9), 093109–093111 (2009).
    [CrossRef]
  22. E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett. 63(11), 1510–1512 (1993).
    [CrossRef]
  23. A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
    [CrossRef]
  24. R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000).
    [CrossRef]
  25. M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light-emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
    [CrossRef]
  26. I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon,” Appl. Phys. Lett. 46(12), 1133–1135 (1985).
    [CrossRef]
  27. D. B. Mawhinney, J. A. Glass, J. T. Yates, J. A. Glass, and J. T. Yates, “FTIR Study of the Oxidation of Porous Silicon,” J. Phys. Chem. B 101(7), 1202–1206 (1997).
    [CrossRef]
  28. W. Kaiser, P. H. Keck, and C. F. Lange, “Infrared absorption and oxygen content in silicon and germanium,” Phys. Rev. 101(4), 1264–1268 (1956).
    [CrossRef]
  29. Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, “High-frequency FTIR absorption of SiO2/Si nanowires,” Chem. Phys. Lett. 378(3-4), 299–304 (2003).
    [CrossRef]
  30. F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
    [CrossRef]
  31. J. Camassel, L. A. Falkovsky, and N. Planes, “Strain effect in silicon-on-insulator materials: Investigation with optical phonons,” Phys. Rev. B 63(3), 035309 (2000).
    [CrossRef]

2010 (1)

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

2009 (8)

L. Z. Liu, X. L. Wu, Z. Y. Zhang, T. H. Li, and P. K. Chu, “Raman investigation of oxidation mechanism of silicon nanowires,” Appl. Phys. Lett. 95(9), 093109–093111 (2009).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

M. A. Ochsenkühn, P. R. T. Jess, H. Stoquert, K. Dholakia, and C. J. Campbell, “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development,” ACS Nano 3(11), 3613–3621 (2009).
[CrossRef] [PubMed]

P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
[CrossRef] [PubMed]

J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009).
[CrossRef] [PubMed]

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, “Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy,” ACS Nano 3(12), 3845–3853 (2009).
[CrossRef] [PubMed]

2008 (2)

T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008).
[CrossRef] [PubMed]

2007 (2)

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[CrossRef]

I. Park, Z. Li, X. Li, A. P. Pisano, and R. S. Williams, “Towards the silicon nanowire-based sensor for intracellular biochemical detection,” Biosens. Bioelectron. 22(9-10), 2065–2070 (2007).
[CrossRef]

2006 (2)

L. Sirleto, M. A. Ferrara, B. Jalali, and I. Rendina, “Spontaneous Raman emission in porous silicon at 1.5 µm and prospects for a Raman amplifier,” J. Opt. A, Pure Appl. Opt. 8(7), S574–S577 (2006).
[CrossRef]

K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006).
[CrossRef] [PubMed]

2004 (2)

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

L. Sirleto, V. Raghunatan, A. Rossi, and B. Jalali, “Raman emission in porous silicon at 1.54 μm,” Electron. Lett. 40(19), 1221–1222 (2004).
[CrossRef]

2003 (2)

K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, and T. Kurosawa, “Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 11), 6742–6747 (2003).
[CrossRef]

Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, “High-frequency FTIR absorption of SiO2/Si nanowires,” Chem. Phys. Lett. 378(3-4), 299–304 (2003).
[CrossRef]

2000 (3)

J. Camassel, L. A. Falkovsky, and N. Planes, “Strain effect in silicon-on-insulator materials: Investigation with optical phonons,” Phys. Rev. B 63(3), 035309 (2000).
[CrossRef]

R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000).
[CrossRef]

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
[CrossRef]

1999 (2)

B. Li, D. Yu, and S. L. Zhang, “Raman spectral study of silicon nanowires,” Phys. Rev. B 59(3), 1645–1648 (1999).
[CrossRef]

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

1998 (1)

B. Ren, F. M. Liu, J. Xie, B. W. Mao, Y. B. Zu, and Z. Q. Tian, “In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions,” Appl. Phys. Lett. 72(8), 933–935 (1998).
[CrossRef]

1997 (1)

D. B. Mawhinney, J. A. Glass, J. T. Yates, J. A. Glass, and J. T. Yates, “FTIR Study of the Oxidation of Porous Silicon,” J. Phys. Chem. B 101(7), 1202–1206 (1997).
[CrossRef]

1994 (1)

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light-emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[CrossRef]

1993 (1)

E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett. 63(11), 1510–1512 (1993).
[CrossRef]

1992 (1)

Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Appl. Phys. Lett. 60(17), 2086–2088 (1992).
[CrossRef]

1985 (1)

I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon,” Appl. Phys. Lett. 46(12), 1133–1135 (1985).
[CrossRef]

1956 (1)

W. Kaiser, P. H. Keck, and C. F. Lange, “Infrared absorption and oxygen content in silicon and germanium,” Phys. Rev. 101(4), 1264–1268 (1956).
[CrossRef]

Andra, G.

T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Araki, H.

Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, “High-frequency FTIR absorption of SiO2/Si nanowires,” Chem. Phys. Lett. 378(3-4), 299–304 (2003).
[CrossRef]

Ay, F.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

Aydinli, A.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

Bai, Z. G.

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Beale, M. I. J.

I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon,” Appl. Phys. Lett. 46(12), 1133–1135 (1985).
[CrossRef]

Benjamin, J. D.

I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon,” Appl. Phys. Lett. 46(12), 1133–1135 (1985).
[CrossRef]

Buchanan, D. A.

E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett. 63(11), 1510–1512 (1993).
[CrossRef]

Camassel, J.

J. Camassel, L. A. Falkovsky, and N. Planes, “Strain effect in silicon-on-insulator materials: Investigation with optical phonons,” Phys. Rev. B 63(3), 035309 (2000).
[CrossRef]

Campbell, C. J.

M. A. Ochsenkühn, P. R. T. Jess, H. Stoquert, K. Dholakia, and C. J. Campbell, “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development,” ACS Nano 3(11), 3613–3621 (2009).
[CrossRef] [PubMed]

Cartier, E.

E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett. 63(11), 1510–1512 (1993).
[CrossRef]

Chang, Y. C.

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

Christiansen, S.

T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Chu, P. K.

L. Z. Liu, X. L. Wu, Z. Y. Zhang, T. H. Li, and P. K. Chu, “Raman investigation of oxidation mechanism of silicon nanowires,” Appl. Phys. Lett. 95(9), 093109–093111 (2009).
[CrossRef]

Dadap, J. I.

J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009).
[CrossRef] [PubMed]

Dholakia, K.

M. A. Ochsenkühn, P. R. T. Jess, H. Stoquert, K. Dholakia, and C. J. Campbell, “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development,” ACS Nano 3(11), 3613–3621 (2009).
[CrossRef] [PubMed]

Ding, Y.

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Driscoll, J. B.

J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009).
[CrossRef] [PubMed]

Falk, F.

T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Falkovsky, L. A.

J. Camassel, L. A. Falkovsky, and N. Planes, “Strain effect in silicon-on-insulator materials: Investigation with optical phonons,” Phys. Rev. B 63(3), 035309 (2000).
[CrossRef]

Fang, H.

K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006).
[CrossRef] [PubMed]

Feng, S. Q.

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Ferrara, M. A.

L. Sirleto, M. A. Ferrara, B. Jalali, and I. Rendina, “Spontaneous Raman emission in porous silicon at 1.5 µm and prospects for a Raman amplifier,” J. Opt. A, Pure Appl. Opt. 8(7), S574–S577 (2006).
[CrossRef]

Fu, J. S.

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Gao, H.

Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, “High-frequency FTIR absorption of SiO2/Si nanowires,” Chem. Phys. Lett. 378(3-4), 299–304 (2003).
[CrossRef]

Glass, J. A.

D. B. Mawhinney, J. A. Glass, J. T. Yates, J. A. Glass, and J. T. Yates, “FTIR Study of the Oxidation of Porous Silicon,” J. Phys. Chem. B 101(7), 1202–1206 (1997).
[CrossRef]

D. B. Mawhinney, J. A. Glass, J. T. Yates, J. A. Glass, and J. T. Yates, “FTIR Study of the Oxidation of Porous Silicon,” J. Phys. Chem. B 101(7), 1202–1206 (1997).
[CrossRef]

Gu, B.

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

Hao, P.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light-emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[CrossRef]

Herman, I. P.

Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Appl. Phys. Lett. 60(17), 2086–2088 (1992).
[CrossRef]

Higashi, G. S.

Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Appl. Phys. Lett. 60(17), 2086–2088 (1992).
[CrossRef]

Hortelano, V.

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

Hou, X.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light-emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[CrossRef]

Hsieh, I.

J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009).
[CrossRef] [PubMed]

Hsu, S. H.

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

Hu, J.

K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006).
[CrossRef] [PubMed]

Hu, Q.

Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, “High-frequency FTIR absorption of SiO2/Si nanowires,” Chem. Phys. Lett. 378(3-4), 299–304 (2003).
[CrossRef]

Huang, D.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light-emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[CrossRef]

Jalali, B.

L. Sirleto, M. A. Ferrara, B. Jalali, and I. Rendina, “Spontaneous Raman emission in porous silicon at 1.5 µm and prospects for a Raman amplifier,” J. Opt. A, Pure Appl. Opt. 8(7), S574–S577 (2006).
[CrossRef]

L. Sirleto, V. Raghunatan, A. Rossi, and B. Jalali, “Raman emission in porous silicon at 1.54 μm,” Electron. Lett. 40(19), 1221–1222 (2004).
[CrossRef]

Jess, P. R. T.

M. A. Ochsenkühn, P. R. T. Jess, H. Stoquert, K. Dholakia, and C. J. Campbell, “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development,” ACS Nano 3(11), 3613–3621 (2009).
[CrossRef] [PubMed]

Jiménez, J.

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

Jing, Z.

P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
[CrossRef] [PubMed]

Kaiser, W.

W. Kaiser, P. H. Keck, and C. F. Lange, “Infrared absorption and oxygen content in silicon and germanium,” Phys. Rev. 101(4), 1264–1268 (1956).
[CrossRef]

Kao, C.-C.

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[CrossRef]

Katoh, Y.

K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, and T. Kurosawa, “Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 11), 6742–6747 (2003).
[CrossRef]

Keck, P. H.

W. Kaiser, P. H. Keck, and C. F. Lange, “Infrared absorption and oxygen content in silicon and germanium,” Phys. Rev. 101(4), 1264–1268 (1956).
[CrossRef]

Kitahara, K.

K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, and T. Kurosawa, “Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 11), 6742–6747 (2003).
[CrossRef]

Kuo, H.-C.

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[CrossRef]

Kurosawa, T.

K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, and T. Kurosawa, “Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 11), 6742–6747 (2003).
[CrossRef]

Lange, C. F.

W. Kaiser, P. H. Keck, and C. F. Lange, “Infrared absorption and oxygen content in silicon and germanium,” Phys. Rev. 101(4), 1264–1268 (1956).
[CrossRef]

Lee, C. S.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
[CrossRef]

Lee, S. T.

K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006).
[CrossRef] [PubMed]

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
[CrossRef]

Leong, P. P.

Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Appl. Phys. Lett. 60(17), 2086–2088 (1992).
[CrossRef]

Li, B.

B. Li, D. Yu, and S. L. Zhang, “Raman spectral study of silicon nanowires,” Phys. Rev. B 59(3), 1645–1648 (1999).
[CrossRef]

Li, T. H.

L. Z. Liu, X. L. Wu, Z. Y. Zhang, T. H. Li, and P. K. Chu, “Raman investigation of oxidation mechanism of silicon nanowires,” Appl. Phys. Lett. 95(9), 093109–093111 (2009).
[CrossRef]

Li, X.

I. Park, Z. Li, X. Li, A. P. Pisano, and R. S. Williams, “Towards the silicon nanowire-based sensor for intracellular biochemical detection,” Biosens. Bioelectron. 22(9-10), 2065–2070 (2007).
[CrossRef]

Li, X. J.

H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008).
[CrossRef] [PubMed]

Li, Z.

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

I. Park, Z. Li, X. Li, A. P. Pisano, and R. S. Williams, “Towards the silicon nanowire-based sensor for intracellular biochemical detection,” Biosens. Bioelectron. 22(9-10), 2065–2070 (2007).
[CrossRef]

Lin, C.

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

Lin, C.-J.

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[CrossRef]

Lin, G.-R.

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[CrossRef]

Lin, H.-S.

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[CrossRef]

Liu, F. M.

B. Ren, F. M. Liu, J. Xie, B. W. Mao, Y. B. Zu, and Z. Q. Tian, “In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions,” Appl. Phys. Lett. 72(8), 933–935 (1998).
[CrossRef]

Liu, L. Z.

L. Z. Liu, X. L. Wu, Z. Y. Zhang, T. H. Li, and P. K. Chu, “Raman investigation of oxidation mechanism of silicon nanowires,” Appl. Phys. Lett. 95(9), 093109–093111 (2009).
[CrossRef]

Liu, X.

J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009).
[CrossRef] [PubMed]

Liu, Y. L.

R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000).
[CrossRef]

Mao, B. W.

B. Ren, F. M. Liu, J. Xie, B. W. Mao, Y. B. Zu, and Z. Q. Tian, “In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions,” Appl. Phys. Lett. 72(8), 933–935 (1998).
[CrossRef]

Martínez, O.

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

Martín-Martín, A.

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

Mawhinney, D. B.

D. B. Mawhinney, J. A. Glass, J. T. Yates, J. A. Glass, and J. T. Yates, “FTIR Study of the Oxidation of Porous Silicon,” J. Phys. Chem. B 101(7), 1202–1206 (1997).
[CrossRef]

Meng, F. S.

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

Murukeshan, V. M.

P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
[CrossRef] [PubMed]

Noda, T.

Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, “High-frequency FTIR absorption of SiO2/Si nanowires,” Chem. Phys. Lett. 378(3-4), 299–304 (2003).
[CrossRef]

Ochsenkühn, M. A.

M. A. Ochsenkühn, P. R. T. Jess, H. Stoquert, K. Dholakia, and C. J. Campbell, “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development,” ACS Nano 3(11), 3613–3621 (2009).
[CrossRef] [PubMed]

Ohnishi, K.

K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, and T. Kurosawa, “Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 11), 6742–6747 (2003).
[CrossRef]

Oran, J. M.

S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, “Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy,” ACS Nano 3(12), 3845–3853 (2009).
[CrossRef] [PubMed]

Ose, E.

T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Osgood, R. M.

J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009).
[CrossRef] [PubMed]

Pai, Y. H.

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

Pan, S. H.

R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000).
[CrossRef]

Pan, Z. W.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
[CrossRef]

Park, I.

I. Park, Z. Li, X. Li, A. P. Pisano, and R. S. Williams, “Towards the silicon nanowire-based sensor for intracellular biochemical detection,” Biosens. Bioelectron. 22(9-10), 2065–2070 (2007).
[CrossRef]

Peng, H. Y.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
[CrossRef]

Peng, K.

K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006).
[CrossRef] [PubMed]

Pietsch, M.

T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Pisano, A. P.

I. Park, Z. Li, X. Li, A. P. Pisano, and R. S. Williams, “Towards the silicon nanowire-based sensor for intracellular biochemical detection,” Biosens. Bioelectron. 22(9-10), 2065–2070 (2007).
[CrossRef]

Planes, N.

J. Camassel, L. A. Falkovsky, and N. Planes, “Strain effect in silicon-on-insulator materials: Investigation with optical phonons,” Phys. Rev. B 63(3), 035309 (2000).
[CrossRef]

Povinelli, M. L.

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

Prabhathan, P.

P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
[CrossRef] [PubMed]

Prieto, A. C.

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

Qian, W.

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Raghunatan, V.

L. Sirleto, V. Raghunatan, A. Rossi, and B. Jalali, “Raman emission in porous silicon at 1.54 μm,” Electron. Lett. 40(19), 1221–1222 (2004).
[CrossRef]

Ramana, P. V.

P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
[CrossRef] [PubMed]

Ren, B.

B. Ren, F. M. Liu, J. Xie, B. W. Mao, Y. B. Zu, and Z. Q. Tian, “In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions,” Appl. Phys. Lett. 72(8), 933–935 (1998).
[CrossRef]

Rendina, I.

L. Sirleto, M. A. Ferrara, B. Jalali, and I. Rendina, “Spontaneous Raman emission in porous silicon at 1.5 µm and prospects for a Raman amplifier,” J. Opt. A, Pure Appl. Opt. 8(7), S574–S577 (2006).
[CrossRef]

Retterer, S. D.

S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, “Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy,” ACS Nano 3(12), 3845–3853 (2009).
[CrossRef] [PubMed]

Rodríguez, A.

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

Rodríguez, T.

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

Rossi, A.

L. Sirleto, V. Raghunatan, A. Rossi, and B. Jalali, “Raman emission in porous silicon at 1.54 μm,” Electron. Lett. 40(19), 1221–1222 (2004).
[CrossRef]

Sangrador, J.

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

Sepaniak, M. J.

S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, “Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy,” ACS Nano 3(12), 3845–3853 (2009).
[CrossRef] [PubMed]

Shang, N. G.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
[CrossRef]

Shi, W. S.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
[CrossRef]

Sirleto, L.

L. Sirleto, M. A. Ferrara, B. Jalali, and I. Rendina, “Spontaneous Raman emission in porous silicon at 1.5 µm and prospects for a Raman amplifier,” J. Opt. A, Pure Appl. Opt. 8(7), S574–S577 (2006).
[CrossRef]

L. Sirleto, V. Raghunatan, A. Rossi, and B. Jalali, “Raman emission in porous silicon at 1.54 μm,” Electron. Lett. 40(19), 1221–1222 (2004).
[CrossRef]

Stathis, J. H.

E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett. 63(11), 1510–1512 (1993).
[CrossRef]

Stelzner, T.

T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Stoquert, H.

M. A. Ochsenkühn, P. R. T. Jess, H. Stoquert, K. Dholakia, and C. J. Campbell, “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development,” ACS Nano 3(11), 3613–3621 (2009).
[CrossRef] [PubMed]

Sui, Z.

Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Appl. Phys. Lett. 60(17), 2086–2088 (1992).
[CrossRef]

Suzuki, H.

Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, “High-frequency FTIR absorption of SiO2/Si nanowires,” Chem. Phys. Lett. 378(3-4), 299–304 (2003).
[CrossRef]

Temkin, H.

Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Appl. Phys. Lett. 60(17), 2086–2088 (1992).
[CrossRef]

Tian, Z. Q.

B. Ren, F. M. Liu, J. Xie, B. W. Mao, Y. B. Zu, and Z. Q. Tian, “In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions,” Appl. Phys. Lett. 72(8), 933–935 (1998).
[CrossRef]

Torres, A.

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

Wang, J. J.

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Wang, N.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
[CrossRef]

Wang, R. P.

R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000).
[CrossRef]

Wang, W.

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

Wang, X.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light-emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[CrossRef]

Wells, S. M.

S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, “Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy,” ACS Nano 3(12), 3845–3853 (2009).
[CrossRef] [PubMed]

Williams, R. S.

I. Park, Z. Li, X. Li, A. P. Pisano, and R. S. Williams, “Towards the silicon nanowire-based sensor for intracellular biochemical detection,” Biosens. Bioelectron. 22(9-10), 2065–2070 (2007).
[CrossRef]

Wu, X. L.

L. Z. Liu, X. L. Wu, Z. Y. Zhang, T. H. Li, and P. K. Chu, “Raman investigation of oxidation mechanism of silicon nanowires,” Appl. Phys. Lett. 95(9), 093109–093111 (2009).
[CrossRef]

Wu, Y.

K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006).
[CrossRef] [PubMed]

Xie, J.

B. Ren, F. M. Liu, J. Xie, B. W. Mao, Y. B. Zu, and Z. Q. Tian, “In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions,” Appl. Phys. Lett. 72(8), 933–935 (1998).
[CrossRef]

Xiong, G. C.

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Xu, H.

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

Xu, H. J.

H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008).
[CrossRef] [PubMed]

Xu, J.

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Yamazaki, R.

K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, and T. Kurosawa, “Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 11), 6742–6747 (2003).
[CrossRef]

Yan, Y.

K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006).
[CrossRef] [PubMed]

Yang, M.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light-emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[CrossRef]

Yang, W.

Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, “High-frequency FTIR absorption of SiO2/Si nanowires,” Chem. Phys. Lett. 378(3-4), 299–304 (2003).
[CrossRef]

Yasseri, S.

J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009).
[CrossRef] [PubMed]

Yates, J. T.

D. B. Mawhinney, J. A. Glass, J. T. Yates, J. A. Glass, and J. T. Yates, “FTIR Study of the Oxidation of Porous Silicon,” J. Phys. Chem. B 101(7), 1202–1206 (1997).
[CrossRef]

D. B. Mawhinney, J. A. Glass, J. T. Yates, J. A. Glass, and J. T. Yates, “FTIR Study of the Oxidation of Porous Silicon,” J. Phys. Chem. B 101(7), 1202–1206 (1997).
[CrossRef]

You, L. P.

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Young, I. M.

I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon,” Appl. Phys. Lett. 46(12), 1133–1135 (1985).
[CrossRef]

Yu, D.

B. Li, D. Yu, and S. L. Zhang, “Raman spectral study of silicon nanowires,” Phys. Rev. B 59(3), 1645–1648 (1999).
[CrossRef]

Yu, D. P.

R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000).
[CrossRef]

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Zhang, F.

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light-emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[CrossRef]

Zhang, H. Z.

R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000).
[CrossRef]

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Zhang, S. L.

B. Li, D. Yu, and S. L. Zhang, “Raman spectral study of silicon nanowires,” Phys. Rev. B 59(3), 1645–1648 (1999).
[CrossRef]

Zhang, Z.

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000).
[CrossRef]

Zhang, Z. Y.

L. Z. Liu, X. L. Wu, Z. Y. Zhang, T. H. Li, and P. K. Chu, “Raman investigation of oxidation mechanism of silicon nanowires,” Appl. Phys. Lett. 95(9), 093109–093111 (2009).
[CrossRef]

Zheng, Y. F.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
[CrossRef]

Zhou, G. W.

R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000).
[CrossRef]

Zhu, J.

K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006).
[CrossRef] [PubMed]

Zou, Y. H.

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

Zu, Y. B.

B. Ren, F. M. Liu, J. Xie, B. W. Mao, Y. B. Zu, and Z. Q. Tian, “In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions,” Appl. Phys. Lett. 72(8), 933–935 (1998).
[CrossRef]

ACS Nano (3)

M. A. Ochsenkühn, P. R. T. Jess, H. Stoquert, K. Dholakia, and C. J. Campbell, “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development,” ACS Nano 3(11), 3613–3621 (2009).
[CrossRef] [PubMed]

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, “Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy,” ACS Nano 3(12), 3845–3853 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000).
[CrossRef]

Appl. Phys. Lett. (7)

Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Appl. Phys. Lett. 60(17), 2086–2088 (1992).
[CrossRef]

G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007).
[CrossRef]

B. Ren, F. M. Liu, J. Xie, B. W. Mao, Y. B. Zu, and Z. Q. Tian, “In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions,” Appl. Phys. Lett. 72(8), 933–935 (1998).
[CrossRef]

L. Z. Liu, X. L. Wu, Z. Y. Zhang, T. H. Li, and P. K. Chu, “Raman investigation of oxidation mechanism of silicon nanowires,” Appl. Phys. Lett. 95(9), 093109–093111 (2009).
[CrossRef]

E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett. 63(11), 1510–1512 (1993).
[CrossRef]

A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010).
[CrossRef]

I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon,” Appl. Phys. Lett. 46(12), 1133–1135 (1985).
[CrossRef]

Biosens. Bioelectron. (1)

I. Park, Z. Li, X. Li, A. P. Pisano, and R. S. Williams, “Towards the silicon nanowire-based sensor for intracellular biochemical detection,” Biosens. Bioelectron. 22(9-10), 2065–2070 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, “High-frequency FTIR absorption of SiO2/Si nanowires,” Chem. Phys. Lett. 378(3-4), 299–304 (2003).
[CrossRef]

Chemistry (1)

K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006).
[CrossRef] [PubMed]

Electron. Lett. (1)

L. Sirleto, V. Raghunatan, A. Rossi, and B. Jalali, “Raman emission in porous silicon at 1.54 μm,” Electron. Lett. 40(19), 1221–1222 (2004).
[CrossRef]

J. Appl. Phys. (1)

M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light-emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

L. Sirleto, M. A. Ferrara, B. Jalali, and I. Rendina, “Spontaneous Raman emission in porous silicon at 1.5 µm and prospects for a Raman amplifier,” J. Opt. A, Pure Appl. Opt. 8(7), S574–S577 (2006).
[CrossRef]

J. Phys. Chem. B (1)

D. B. Mawhinney, J. A. Glass, J. T. Yates, J. A. Glass, and J. T. Yates, “FTIR Study of the Oxidation of Porous Silicon,” J. Phys. Chem. B 101(7), 1202–1206 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, and T. Kurosawa, “Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 11), 6742–6747 (2003).
[CrossRef]

Nanotechnology (1)

T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Opt. Express (5)

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009).
[CrossRef] [PubMed]

P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008).
[CrossRef] [PubMed]

Opt. Mater. (1)

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[CrossRef]

Phys. Rev. (1)

W. Kaiser, P. H. Keck, and C. F. Lange, “Infrared absorption and oxygen content in silicon and germanium,” Phys. Rev. 101(4), 1264–1268 (1956).
[CrossRef]

Phys. Rev. B (4)

J. Camassel, L. A. Falkovsky, and N. Planes, “Strain effect in silicon-on-insulator materials: Investigation with optical phonons,” Phys. Rev. B 63(3), 035309 (2000).
[CrossRef]

R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000).
[CrossRef]

D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999).
[CrossRef]

B. Li, D. Yu, and S. L. Zhang, “Raman spectral study of silicon nanowires,” Phys. Rev. B 59(3), 1645–1648 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The (a) nanorod length and (b) nanorod diameter as a function of etching time. Inset: the cross-section (upper) and top (lower) SEM images of three selected nanorod samples.

Fig. 2
Fig. 2

Raman spectra of (a) as-etched and (b) annealed Si nanorods with different rod length.

Fig. 3
Fig. 3

Raman intensity enhancement of as-etched samples and ozidized samples.

Fig. 4
Fig. 4

Linewidth Increment and peak wavenumber of as-etched and oxidized samples vs. rod length.

Fig. 5
Fig. 5

The FTIR of (a) as-etched and (b) oxidized Si nanorods with different nanorod lengths.

Fig. 6
Fig. 6

The wavenumber (black square dots) and intensity (blue square dots) of Si-O-Si stretching mode absorption versus nanorod length for (a) as-etched and (b) oxidized Si nanorod

Fig. 7
Fig. 7

(a) Calculated area dislocation density of Si nanorod surface with different lengths. (b) The simulated spectral linewidth increment of surface Raman scattering signal from Si nanorod surface

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ τ = τ τ 0 = B tan 1 θ = c ν 2 4 π w 0 s 2 tan 1 θ = c ( g r 0 2 w 0 2 ) 2 4 π w 0 s 2 tan 1 ( s 2 r 0 2 w 0 τ ) c g 2 r 0 2 w 0 2 4 π τ .

Metrics