Abstract

We report on a passively mode-locked femtosecond fiber oscillator using only fiber-based components without intracavity dispersion compensation. The all-normal dispersion fiber laser operates in the dissipative-soliton regime and utilizes a spectral filter for pulse shaping. The 3.8 ps long pulses with pulse energies of 3.6 nJ can be dechirped with a grating compressor to 76 fs. The output spectrum reveals a full width at half maximum of 39.7 nm and a center wavelength of 1032 nm. The repetition rate is 71 MHz. The influence of pulse energy variation is discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb(3+)silica fiber laser,” Opt. Lett. 22(5), 316–318 (1997).
    [Crossref] [PubMed]
  2. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16(10), 7055–7059 (2008).
    [Crossref] [PubMed]
  3. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [Crossref] [PubMed]
  4. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser & Photonics Rev. 2(1-2), 58–73 (2008).
    [Crossref]
  5. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [Crossref] [PubMed]
  6. H. Kalaycioglu, B. Oktem, Ç. Şenel, P. P. Paltani, and F. Ö. Ilday, “Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier,” Opt. Lett. 35(7), 959–961 (2010).
    [Crossref] [PubMed]
  7. C. K. Nielsen and S. R. Keiding, “All-fiber mode-locked fiber laser,” Opt. Lett. 32(11), 1474–1476 (2007).
    [Crossref] [PubMed]
  8. O. Prochnow, A. Ruehl, M. Schultz, D. Wandt, and D. Kracht, “All-fiber similariton laser at 1 mum without dispersion compensation,” Opt. Express 15(11), 6889–6893 (2007).
    [Crossref] [PubMed]
  9. J. Fekete, A. Cserteg, and R. Szipőocs, “All-fiber, all-normal dispersion ytterbium ring oscillator,” Laser Phys. Lett. 6(1), 49–53 (2009).
    [Crossref]
  10. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
    [Crossref] [PubMed]
  11. K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010).
    [Crossref] [PubMed]
  12. M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner, and D. Kracht, “All-fiber ytterbium femtosecond laser without dispersion compensation,” Opt. Express 16(24), 19562–19567 (2008).
    [Crossref] [PubMed]
  13. F. Shohda, Y. Hori, M. Nakazawa, J. Mata, and J. Tsukamoto, “131 fs, 33 MHz all-fiber soliton laser at 1.07 microm with a film-type SWNT saturable absorber coated on polyimide,” Opt. Express 18(11), 11223–11229 (2010).
    [Crossref] [PubMed]
  14. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [Crossref]
  15. N. B. Chichkov, K. Hausmann, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “50 fs pulses from an all-normal dispersion erbium fiber oscillator,” Opt. Lett. 35(18), 3081–3083 (2010).
    [Crossref] [PubMed]

2010 (4)

2009 (1)

J. Fekete, A. Cserteg, and R. Szipőocs, “All-fiber, all-normal dispersion ytterbium ring oscillator,” Laser Phys. Lett. 6(1), 49–53 (2009).
[Crossref]

2008 (5)

2007 (3)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

1997 (1)

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Cautaerts, V.

Chichkov, N. B.

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Cserteg, A.

J. Fekete, A. Cserteg, and R. Szipőocs, “All-fiber, all-normal dispersion ytterbium ring oscillator,” Laser Phys. Lett. 6(1), 49–53 (2009).
[Crossref]

Fekete, J.

J. Fekete, A. Cserteg, and R. Szipőocs, “All-fiber, all-normal dispersion ytterbium ring oscillator,” Laser Phys. Lett. 6(1), 49–53 (2009).
[Crossref]

Hanna, D. C.

Hausmann, K.

Hori, Y.

Ilday, F. Ö.

Kalaycioglu, H.

Karow, H.

Keiding, S. R.

Kieu, K.

Kobayashi, Y.

Kracht, D.

Mata, J.

Morgner, U.

Nakazawa, M.

Neumann, J.

Nielsen, C. K.

Oktem, B.

Özgören, K.

Paltani, P. P.

Paschotta, R.

Prochnow, O.

Renninger, W. H.

Richardson, D. J.

Ruehl, A.

Schultz, M.

Senel, Ç.

Shohda, F.

Szipoocs, R.

J. Fekete, A. Cserteg, and R. Szipőocs, “All-fiber, all-normal dispersion ytterbium ring oscillator,” Laser Phys. Lett. 6(1), 49–53 (2009).
[Crossref]

Torizuka, K.

Tsukamoto, J.

Wandt, D.

Wise, F. W.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser & Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
[Crossref] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Yoshitomi, D.

Zhou, X.

J. Opt. Soc. Am. B (1)

Laser & Photonics Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser & Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Laser Phys. Lett. (1)

J. Fekete, A. Cserteg, and R. Szipőocs, “All-fiber, all-normal dispersion ytterbium ring oscillator,” Laser Phys. Lett. 6(1), 49–53 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the fiber ring cavity. WDM, wavelength-division multiplexer; YDF, ytterbium-doped fiber; OC, output coupler; PC, polarization controller.

Fig. 2
Fig. 2

(a) Measured transmission spectrum of the small bandwidth WDM serving as a spectral filter. Solid curve, input; dashed curve, output; dotted curve, relative transmission. (b) Photodetector signal of the pulse train.

Fig. 3
Fig. 3

Measured spectra. (a) Transmitted and (b) rejected signal from the PBS behind the output coupler.

Fig. 4
Fig. 4

(a) Autocorrelation of the compressed pulses (solid curve) and of the Fourier-limited pulses (dotted curve) and (b) detail of the side peak in the autocorrelation. Inset: autocorrelation of the uncompressed pulses.

Fig. 5
Fig. 5

Radio-frequency spectra at pulse energies of 3.6 nJ. (a) From 0 GHz to 1 GHz. (b) Span of 1 kHz centered at the fundamental repetition rate of 71.3 MHz with a resolution bandwidth of 1 Hz.

Fig. 6
Fig. 6

(a) Measured output power as a function of pump power with a mode-locking threshold of 450 mW. The diagrams (b), (c), and (d) show the output spectra for the indicated pulse energies.

Fig. 7
Fig. 7

(a) Dependence of the spectral FWHM on pulse energy. (b) Measured and Fourier-limited pulse durations as a function of pulse energy.

Fig. 8
Fig. 8

(a) Deviation of the measured pulse FWHM from the Fourier-limited FWHM. (b) External compressor dispersion for minimum pulse width as a function of pulse energy.

Metrics