Abstract

The quality factor of microcavity organic lasers, designed for operation under electric pumping, has been numerically investigated. The microcavity structure consists of an organic light emitting diode set in between multilayer dielectric mirrors centered for an emission at 620 nm. In order to optimize the quality factor, different parameters have been studied: the impact of high and low index materials used for the multilayer mirrors, the role of a spacer inserted in between the mirrors to obtain an extended cavity, and the effect of an absorbing electrode made of metallic or transparent conductive oxide layer. The results of our different optimizations have shown a quality factor (Q) as high as 15 000.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
    [CrossRef]
  2. J. H. Schön, Ch. Kloc, A. Dodabalapur, and B. Batlogg, “An organic solid state injection laser,” Science 289(5479), 599–601 (2000).
    [CrossRef] [PubMed]
  3. M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, “Prospects for electrically pumped organic lasers,” Phys. Rev. 66, 1–16 (2002).
  4. E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).
  5. N. Tessler, “Lasers Based on Semiconducting Organic Materials,” Adv. Mater. 11(5), 363–370 (1999).
    [CrossRef]
  6. V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000).
    [CrossRef]
  7. M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
    [CrossRef]
  8. S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997).
    [CrossRef]
  9. N. Tessler, N. T. Harrison, and R. H. Friend, “High peak brightness polymer light-emitting diodes,” Adv. Mater. 10(1), 64–68 (1998).
    [CrossRef]
  10. T. W. Lee, O. O. Park, H. N. Cho, D. Y. Kim, and Y. C. Kim, “Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends,” J. Appl. Phys. 93(3), 1367–1370 (2003).
    [CrossRef]
  11. M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389(6650), 466–469 (1997).
    [CrossRef]
  12. X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004).
    [CrossRef]
  13. V. G. Kozlov, P. E. Burrows, G. Parthasarathy, and S. R. Forrest, “Optical properties of molecular organic semiconductor thin films under intense electrical excitation,” Appl. Phys. Lett. 74(8), 1057–1059 (1999).
    [CrossRef]
  14. D. J. Pine, N. Tessler, and R. H. Friend, “Moving the recombination zone in two layer polymer LEDs using high voltage pulses,” Synth. Met. 102(1-3), 1108–1109 (1999).
    [CrossRef]
  15. N. Tessler, N. T. Harrison, and R. H. Friend, “High Peak Brightness Polymer Light-Emitting Diodes,” Adv. Mater. 10(1), 64–68 (1998).
    [CrossRef]
  16. N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
    [CrossRef]
  17. V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000).
    [CrossRef]
  18. B. Michael, D. McGehee, and A. J. Heeger, “Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,” adv,” Mater 12, 1655–1668 (2000).
  19. M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
    [CrossRef]
  20. S. Lattante, F. Romano, A. P. Caricato, M. Martino, and M. Anni, “Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition,” Appl. Phys. Lett. 89(3), 1–3 (2006).
    [CrossRef]
  21. P. Gorm, T. Rabe, T. Riedl, and W. Kowalsky, “Loss reduction in fully contacted organic laser waveguides using TE2 modes,” Appl. Phys. Lett. 91, 1–3 (2007).
  22. G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
    [CrossRef]
  23. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
    [CrossRef]
  24. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
    [CrossRef]
  25. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
    [CrossRef] [PubMed]
  26. S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998).
    [CrossRef]
  27. A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007).
    [CrossRef]
  28. A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005).
    [CrossRef]
  29. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
    [CrossRef]
  30. S. A. Furman, and A. V. Tikhonravov, “Basic of optics of multilayer systems” (Ed.) Frontieres 1992.
  31. S. R. A. Dods, Z. Zhang, and M. Ogura, “Highly dispersive mirror in Ta2O5/SiO2 for femtosecond lasers designed by inverse spectral theory,” Appl. Opt. 38(21), 4711–4719 (1999).
    [CrossRef]
  32. R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. MacLaren, and S. Rowan, “Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy,” J. Phys.: Conference Series 241, 012070 (2010).
    [CrossRef]
  33. J. H. James, M. J. Proctro, C. Faure, W. Baer, and F. K. Reinhartf, “SiO2/TiO2 quarter wave dielectric mirrors for vertical cavity surface emitting lasers,” Helvetica Physica Acta 63, 513–514 (1990).
  34. M. Punke, S. Mozer, M. Stroisch, M. Gerken, G. Bastian, and U. Lemmer, “Organic semiconductor devices for micro-optical applications,” Proc. of SPIE 6185, 618505 1–13 (2006).
  35. H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001).
    [CrossRef]
  36. W. Rammal, and Ph. D. Thesis, “Réalisation de diodes électroluminescentes souples et caractérisations,” University of Limoges (France), Thesis N°1 (2006).
  37. M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, and M. Aldissi, “High quality transparent conductive electrodes in organic photovoltaic devices,” Thin Solid Films 518(4), 1250–1253 (2009).
    [CrossRef]
  38. S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
    [CrossRef]
  39. D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous Emission from Planar Microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
    [CrossRef]
  40. A. Dodabalapur, L. J. Rothberg, and T. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities,” Appl. Phys. Lett. 65(18), 2308–2310 (1994).
    [CrossRef]
  41. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
    [CrossRef] [PubMed]

2010 (1)

R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. MacLaren, and S. Rowan, “Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy,” J. Phys.: Conference Series 241, 012070 (2010).
[CrossRef]

2009 (1)

M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, and M. Aldissi, “High quality transparent conductive electrodes in organic photovoltaic devices,” Thin Solid Films 518(4), 1250–1253 (2009).
[CrossRef]

2008 (1)

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

2007 (2)

A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007).
[CrossRef]

P. Gorm, T. Rabe, T. Riedl, and W. Kowalsky, “Loss reduction in fully contacted organic laser waveguides using TE2 modes,” Appl. Phys. Lett. 91, 1–3 (2007).

2006 (2)

S. Lattante, F. Romano, A. P. Caricato, M. Martino, and M. Anni, “Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition,” Appl. Phys. Lett. 89(3), 1–3 (2006).
[CrossRef]

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

2005 (3)

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
[CrossRef]

A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
[CrossRef]

2004 (1)

X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004).
[CrossRef]

2003 (2)

T. W. Lee, O. O. Park, H. N. Cho, D. Y. Kim, and Y. C. Kim, “Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends,” J. Appl. Phys. 93(3), 1367–1370 (2003).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[CrossRef]

2002 (1)

M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, “Prospects for electrically pumped organic lasers,” Phys. Rev. 66, 1–16 (2002).

2001 (2)

E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).

H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001).
[CrossRef]

2000 (6)

J. H. Schön, Ch. Kloc, A. Dodabalapur, and B. Batlogg, “An organic solid state injection laser,” Science 289(5479), 599–601 (2000).
[CrossRef] [PubMed]

V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000).
[CrossRef]

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000).
[CrossRef]

B. Michael, D. McGehee, and A. J. Heeger, “Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,” adv,” Mater 12, 1655–1668 (2000).

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[CrossRef]

1999 (5)

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

V. G. Kozlov, P. E. Burrows, G. Parthasarathy, and S. R. Forrest, “Optical properties of molecular organic semiconductor thin films under intense electrical excitation,” Appl. Phys. Lett. 74(8), 1057–1059 (1999).
[CrossRef]

D. J. Pine, N. Tessler, and R. H. Friend, “Moving the recombination zone in two layer polymer LEDs using high voltage pulses,” Synth. Met. 102(1-3), 1108–1109 (1999).
[CrossRef]

N. Tessler, “Lasers Based on Semiconducting Organic Materials,” Adv. Mater. 11(5), 363–370 (1999).
[CrossRef]

S. R. A. Dods, Z. Zhang, and M. Ogura, “Highly dispersive mirror in Ta2O5/SiO2 for femtosecond lasers designed by inverse spectral theory,” Appl. Opt. 38(21), 4711–4719 (1999).
[CrossRef]

1998 (3)

N. Tessler, N. T. Harrison, and R. H. Friend, “High peak brightness polymer light-emitting diodes,” Adv. Mater. 10(1), 64–68 (1998).
[CrossRef]

N. Tessler, N. T. Harrison, and R. H. Friend, “High Peak Brightness Polymer Light-Emitting Diodes,” Adv. Mater. 10(1), 64–68 (1998).
[CrossRef]

S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998).
[CrossRef]

1997 (2)

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389(6650), 466–469 (1997).
[CrossRef]

S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997).
[CrossRef]

1996 (1)

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

1994 (2)

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous Emission from Planar Microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, and T. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities,” Appl. Phys. Lett. 65(18), 2308–2310 (1994).
[CrossRef]

1992 (1)

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
[CrossRef] [PubMed]

1991 (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[CrossRef]

1990 (1)

J. H. James, M. J. Proctro, C. Faure, W. Baer, and F. K. Reinhartf, “SiO2/TiO2 quarter wave dielectric mirrors for vertical cavity surface emitting lasers,” Helvetica Physica Acta 63, 513–514 (1990).

Aldissi, M.

M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, and M. Aldissi, “High quality transparent conductive electrodes in organic photovoltaic devices,” Thin Solid Films 518(4), 1250–1253 (2009).
[CrossRef]

Andrew, P.

A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[CrossRef]

Anni, M.

S. Lattante, F. Romano, A. P. Caricato, M. Martino, and M. Anni, “Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition,” Appl. Phys. Lett. 89(3), 1–3 (2006).
[CrossRef]

Baer, W.

J. H. James, M. J. Proctro, C. Faure, W. Baer, and F. K. Reinhartf, “SiO2/TiO2 quarter wave dielectric mirrors for vertical cavity surface emitting lasers,” Helvetica Physica Acta 63, 513–514 (1990).

Baik, H. K.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Baldo, M. A.

M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, “Prospects for electrically pumped organic lasers,” Phys. Rev. 66, 1–16 (2002).

Bao, Z.

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389(6650), 466–469 (1997).
[CrossRef]

Barnes, W. L.

A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[CrossRef]

Bassiri, R.

R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. MacLaren, and S. Rowan, “Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy,” J. Phys.: Conference Series 241, 012070 (2010).
[CrossRef]

Batlogg, B.

J. H. Schön, Ch. Kloc, A. Dodabalapur, and B. Batlogg, “An organic solid state injection laser,” Science 289(5479), 599–601 (2000).
[CrossRef] [PubMed]

Berggren, M.

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389(6650), 466–469 (1997).
[CrossRef]

Borisenko, K. B.

R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. MacLaren, and S. Rowan, “Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy,” J. Phys.: Conference Series 241, 012070 (2010).
[CrossRef]

Bradley, D. D. C.

G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[CrossRef]

Burns, S. E.

S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998).
[CrossRef]

Burrows, E.

V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000).
[CrossRef]

Burrows, P. E.

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000).
[CrossRef]

V. G. Kozlov, P. E. Burrows, G. Parthasarathy, and S. R. Forrest, “Optical properties of molecular organic semiconductor thin films under intense electrical excitation,” Appl. Phys. Lett. 74(8), 1057–1059 (1999).
[CrossRef]

Cacialli, F.

S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998).
[CrossRef]

Caricato, A. P.

S. Lattante, F. Romano, A. P. Caricato, M. Martino, and M. Anni, “Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition,” Appl. Phys. Lett. 89(3), 1–3 (2006).
[CrossRef]

Chakaroun, M.

M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, and M. Aldissi, “High quality transparent conductive electrodes in organic photovoltaic devices,” Thin Solid Films 518(4), 1250–1253 (2009).
[CrossRef]

Cho, H. N.

T. W. Lee, O. O. Park, H. N. Cho, D. Y. Kim, and Y. C. Kim, “Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends,” J. Appl. Phys. 93(3), 1367–1370 (2003).
[CrossRef]

Choi, S. H.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Chou, S. Y.

V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000).
[CrossRef]

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000).
[CrossRef]

Chrisey, D. B.

H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001).
[CrossRef]

Cleave, V.

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

Cockayne, D. J. H.

R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. MacLaren, and S. Rowan, “Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy,” J. Phys.: Conference Series 241, 012070 (2010).
[CrossRef]

Day, M.

X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004).
[CrossRef]

de Souzac, M.

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

Defranoux, C.

M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, and M. Aldissi, “High quality transparent conductive electrodes in organic photovoltaic devices,” Thin Solid Films 518(4), 1250–1253 (2009).
[CrossRef]

Denton, G.

S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998).
[CrossRef]

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Deppe, D. G.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous Emission from Planar Microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Ding, J.

X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004).
[CrossRef]

Dodabalapur, A.

J. H. Schön, Ch. Kloc, A. Dodabalapur, and B. Batlogg, “An organic solid state injection laser,” Science 289(5479), 599–601 (2000).
[CrossRef] [PubMed]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389(6650), 466–469 (1997).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, and T. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities,” Appl. Phys. Lett. 65(18), 2308–2310 (1994).
[CrossRef]

Dods, S. R. A.

S. R. A. Dods, Z. Zhang, and M. Ogura, “Highly dispersive mirror in Ta2O5/SiO2 for femtosecond lasers designed by inverse spectral theory,” Appl. Opt. 38(21), 4711–4719 (1999).
[CrossRef]

Faure, C.

J. H. James, M. J. Proctro, C. Faure, W. Baer, and F. K. Reinhartf, “SiO2/TiO2 quarter wave dielectric mirrors for vertical cavity surface emitting lasers,” Helvetica Physica Acta 63, 513–514 (1990).

Feldmann, J.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[CrossRef]

Florez, L. T.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[CrossRef]

Forrest, S. R.

M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, “Prospects for electrically pumped organic lasers,” Phys. Rev. 66, 1–16 (2002).

V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000).
[CrossRef]

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000).
[CrossRef]

V. G. Kozlov, P. E. Burrows, G. Parthasarathy, and S. R. Forrest, “Optical properties of molecular organic semiconductor thin films under intense electrical excitation,” Appl. Phys. Lett. 74(8), 1057–1059 (1999).
[CrossRef]

Friend, R. H.

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

D. J. Pine, N. Tessler, and R. H. Friend, “Moving the recombination zone in two layer polymer LEDs using high voltage pulses,” Synth. Met. 102(1-3), 1108–1109 (1999).
[CrossRef]

N. Tessler, N. T. Harrison, and R. H. Friend, “High Peak Brightness Polymer Light-Emitting Diodes,” Adv. Mater. 10(1), 64–68 (1998).
[CrossRef]

N. Tessler, N. T. Harrison, and R. H. Friend, “High peak brightness polymer light-emitting diodes,” Adv. Mater. 10(1), 64–68 (1998).
[CrossRef]

S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Frolov, S. V.

S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997).
[CrossRef]

Gellermann, W.

S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997).
[CrossRef]

Gombert, A.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[CrossRef]

Gorm, P.

P. Gorm, T. Rabe, T. Riedl, and W. Kowalsky, “Loss reduction in fully contacted organic laser waveguides using TE2 modes,” Appl. Phys. Lett. 91, 1–3 (2007).

Graupner, W.

E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).

Grayc, J.

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[CrossRef]

Haritani, T.

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
[CrossRef]

Harrison, N. T.

N. Tessler, N. T. Harrison, and R. H. Friend, “High peak brightness polymer light-emitting diodes,” Adv. Mater. 10(1), 64–68 (1998).
[CrossRef]

N. Tessler, N. T. Harrison, and R. H. Friend, “High Peak Brightness Polymer Light-Emitting Diodes,” Adv. Mater. 10(1), 64–68 (1998).
[CrossRef]

Heeger, A. J.

B. Michael, D. McGehee, and A. J. Heeger, “Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,” adv,” Mater 12, 1655–1668 (2000).

Heliotis, G.

G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[CrossRef]

Hibino, R.

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
[CrossRef]

Ho, P. K. H.

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

Horwitz, J. S.

H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001).
[CrossRef]

Hough, J.

R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. MacLaren, and S. Rowan, “Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy,” J. Phys.: Conference Series 241, 012070 (2010).
[CrossRef]

Huffaker, D. L.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous Emission from Planar Microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Hwang, H. S.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Ichikawa, M.

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
[CrossRef]

Inoue, M.

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
[CrossRef]

James, J. H.

J. H. James, M. J. Proctro, C. Faure, W. Baer, and F. K. Reinhartf, “SiO2/TiO2 quarter wave dielectric mirrors for vertical cavity surface emitting lasers,” Helvetica Physica Acta 63, 513–514 (1990).

Jeong, H. S.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[CrossRef]

Jo, S. J.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Joannopoulos, J. D.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Kafafi, Z. H.

H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001).
[CrossRef]

Kallinger, C.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[CrossRef]

Khalfin, V. B.

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000).
[CrossRef]

V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000).
[CrossRef]

Kim, C. S.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Kim, C.-H.

E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).

Kim, D. Y.

T. W. Lee, O. O. Park, H. N. Cho, D. Y. Kim, and Y. C. Kim, “Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends,” J. Appl. Phys. 93(3), 1367–1370 (2003).
[CrossRef]

Kim, H.

H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001).
[CrossRef]

Kim, J. T.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Kim, Y. C.

T. W. Lee, O. O. Park, H. N. Cho, D. Y. Kim, and Y. C. Kim, “Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends,” J. Appl. Phys. 93(3), 1367–1370 (2003).
[CrossRef]

Kloc, Ch.

J. H. Schön, Ch. Kloc, A. Dodabalapur, and B. Batlogg, “An organic solid state injection laser,” Science 289(5479), 599–601 (2000).
[CrossRef] [PubMed]

Kowalsky, W.

P. Gorm, T. Rabe, T. Riedl, and W. Kowalsky, “Loss reduction in fully contacted organic laser waveguides using TE2 modes,” Appl. Phys. Lett. 91, 1–3 (2007).

Koyama, T.

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
[CrossRef]

Kozlov, V. G.

V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000).
[CrossRef]

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000).
[CrossRef]

V. G. Kozlov, P. E. Burrows, G. Parthasarathy, and S. R. Forrest, “Optical properties of molecular organic semiconductor thin films under intense electrical excitation,” Appl. Phys. Lett. 74(8), 1057–1059 (1999).
[CrossRef]

Krauss, T. F.

A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007).
[CrossRef]

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

Lane, P. A.

S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997).
[CrossRef]

Lattante, S.

S. Lattante, F. Romano, A. P. Caricato, M. Martino, and M. Anni, “Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition,” Appl. Phys. Lett. 89(3), 1–3 (2006).
[CrossRef]

Le Barnyd, P.

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

Lee, C. H.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Lee, T. W.

T. W. Lee, O. O. Park, H. N. Cho, D. Y. Kim, and Y. C. Kim, “Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends,” J. Appl. Phys. 93(3), 1367–1370 (2003).
[CrossRef]

Lee, Y. H.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[CrossRef]

Lei, C.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous Emission from Planar Microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Leising, G.

E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).

Lemmer, U.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[CrossRef]

Li, Y.

X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004).
[CrossRef]

Liess, M.

S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997).
[CrossRef]

Lin, C. C.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous Emission from Planar Microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

List, E. J. W.

E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).

Liu, X.

X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004).
[CrossRef]

Lucas, B.

M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, and M. Aldissi, “High quality transparent conductive electrodes in organic photovoltaic devices,” Thin Solid Films 518(4), 1250–1253 (2009).
[CrossRef]

MacLaren, I.

R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. MacLaren, and S. Rowan, “Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy,” J. Phys.: Conference Series 241, 012070 (2010).
[CrossRef]

Martino, M.

S. Lattante, F. Romano, A. P. Caricato, M. Martino, and M. Anni, “Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition,” Appl. Phys. Lett. 89(3), 1–3 (2006).
[CrossRef]

Mattoussi, H.

H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001).
[CrossRef]

McGehee, D.

B. Michael, D. McGehee, and A. J. Heeger, “Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,” adv,” Mater 12, 1655–1668 (2000).

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Michael, B.

B. Michael, D. McGehee, and A. J. Heeger, “Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,” adv,” Mater 12, 1655–1668 (2000).

Miller, T.

A. Dodabalapur, L. J. Rothberg, and T. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities,” Appl. Phys. Lett. 65(18), 2308–2310 (1994).
[CrossRef]

Mishima, H.

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
[CrossRef]

Moore, S. A.

A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007).
[CrossRef]

Murata, Z. H.

H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001).
[CrossRef]

Naik, A. K.

E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).

Nakamura, K.

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
[CrossRef]

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Noh, J. H.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

O’ Faolain, L.

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

O'Brien, D. F.

M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, “Prospects for electrically pumped organic lasers,” Phys. Rev. 66, 1–16 (2002).

Ogura, M.

S. R. A. Dods, Z. Zhang, and M. Ogura, “Highly dispersive mirror in Ta2O5/SiO2 for femtosecond lasers designed by inverse spectral theory,” Appl. Opt. 38(21), 4711–4719 (1999).
[CrossRef]

Ozaki, M.

S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997).
[CrossRef]

Park, O. O.

T. W. Lee, O. O. Park, H. N. Cho, D. Y. Kim, and Y. C. Kim, “Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends,” J. Appl. Phys. 93(3), 1367–1370 (2003).
[CrossRef]

Park, S. Y.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Parthasarathy, G.

V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000).
[CrossRef]

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000).
[CrossRef]

V. G. Kozlov, P. E. Burrows, G. Parthasarathy, and S. R. Forrest, “Optical properties of molecular organic semiconductor thin films under intense electrical excitation,” Appl. Phys. Lett. 74(8), 1057–1059 (1999).
[CrossRef]

Piel, J. P.

M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, and M. Aldissi, “High quality transparent conductive electrodes in organic photovoltaic devices,” Thin Solid Films 518(4), 1250–1253 (2009).
[CrossRef]

Pine, D. J.

D. J. Pine, N. Tessler, and R. H. Friend, “Moving the recombination zone in two layer polymer LEDs using high voltage pulses,” Synth. Met. 102(1-3), 1108–1109 (1999).
[CrossRef]

Pinner, D. J.

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

Pique, A.

H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001).
[CrossRef]

Proctro, M. J.

J. H. James, M. J. Proctro, C. Faure, W. Baer, and F. K. Reinhartf, “SiO2/TiO2 quarter wave dielectric mirrors for vertical cavity surface emitting lasers,” Helvetica Physica Acta 63, 513–514 (1990).

Py, C.

X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004).
[CrossRef]

Rabe, T.

P. Gorm, T. Rabe, T. Riedl, and W. Kowalsky, “Loss reduction in fully contacted organic laser waveguides using TE2 modes,” Appl. Phys. Lett. 91, 1–3 (2007).

Ratier, B.

M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, and M. Aldissi, “High quality transparent conductive electrodes in organic photovoltaic devices,” Thin Solid Films 518(4), 1250–1253 (2009).
[CrossRef]

Reinhartf, F. K.

J. H. James, M. J. Proctro, C. Faure, W. Baer, and F. K. Reinhartf, “SiO2/TiO2 quarter wave dielectric mirrors for vertical cavity surface emitting lasers,” Helvetica Physica Acta 63, 513–514 (1990).

Ribierre, J.-C.

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

Riechel, S.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[CrossRef]

Riedl, T.

P. Gorm, T. Rabe, T. Riedl, and W. Kowalsky, “Loss reduction in fully contacted organic laser waveguides using TE2 modes,” Appl. Phys. Lett. 91, 1–3 (2007).

Romano, F.

S. Lattante, F. Romano, A. P. Caricato, M. Martino, and M. Anni, “Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition,” Appl. Phys. Lett. 89(3), 1–3 (2006).
[CrossRef]

Rothberg, L. J.

A. Dodabalapur, L. J. Rothberg, and T. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities,” Appl. Phys. Lett. 65(18), 2308–2310 (1994).
[CrossRef]

Rowan, S.

R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. MacLaren, and S. Rowan, “Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy,” J. Phys.: Conference Series 241, 012070 (2010).
[CrossRef]

Rumbles, G.

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

Ruseckas, A.

A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007).
[CrossRef]

Ryu, S. Y.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Samuel, I. D.

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

Samuel, I. D. W.

A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007).
[CrossRef]

A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

Scherer, A.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[CrossRef]

Scherf, U.

E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[CrossRef]

Schön, J. H.

J. H. Schön, Ch. Kloc, A. Dodabalapur, and B. Batlogg, “An organic solid state injection laser,” Science 289(5479), 599–601 (2000).
[CrossRef] [PubMed]

Shinar, J.

E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389(6650), 466–469 (1997).
[CrossRef]

Song, S. Y.

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

Stevens, M. A.

S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998).
[CrossRef]

Taniguchi, Y.

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
[CrossRef]

Tao, Y.

X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004).
[CrossRef]

Tessle, N.

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

Tessler, N.

D. J. Pine, N. Tessler, and R. H. Friend, “Moving the recombination zone in two layer polymer LEDs using high voltage pulses,” Synth. Met. 102(1-3), 1108–1109 (1999).
[CrossRef]

N. Tessler, “Lasers Based on Semiconducting Organic Materials,” Adv. Mater. 11(5), 363–370 (1999).
[CrossRef]

N. Tessler, N. T. Harrison, and R. H. Friend, “High Peak Brightness Polymer Light-Emitting Diodes,” Adv. Mater. 10(1), 64–68 (1998).
[CrossRef]

N. Tessler, N. T. Harrison, and R. H. Friend, “High peak brightness polymer light-emitting diodes,” Adv. Mater. 10(1), 64–68 (1998).
[CrossRef]

S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Thompson, M. E.

M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, “Prospects for electrically pumped organic lasers,” Phys. Rev. 66, 1–16 (2002).

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Tsiminis, G.

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

Turnbull, G. A.

A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007).
[CrossRef]

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

Vardeny, Z. V.

S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997).
[CrossRef]

Vasdekis, A. E.

A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007).
[CrossRef]

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

Wang, J.

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000).
[CrossRef]

V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000).
[CrossRef]

Wittwer, V.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[CrossRef]

Xia, R.

G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[CrossRef]

Yahiogluc, G.

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

Yokoyama, H.

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
[CrossRef] [PubMed]

Yoshino, K.

S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997).
[CrossRef]

Zhang, Z.

S. R. A. Dods, Z. Zhang, and M. Ogura, “Highly dispersive mirror in Ta2O5/SiO2 for femtosecond lasers designed by inverse spectral theory,” Appl. Opt. 38(21), 4711–4719 (1999).
[CrossRef]

Adv. Mater. (3)

N. Tessler, “Lasers Based on Semiconducting Organic Materials,” Adv. Mater. 11(5), 363–370 (1999).
[CrossRef]

N. Tessler, N. T. Harrison, and R. H. Friend, “High peak brightness polymer light-emitting diodes,” Adv. Mater. 10(1), 64–68 (1998).
[CrossRef]

N. Tessler, N. T. Harrison, and R. H. Friend, “High Peak Brightness Polymer Light-Emitting Diodes,” Adv. Mater. 10(1), 64–68 (1998).
[CrossRef]

Appl. Opt. (1)

S. R. A. Dods, Z. Zhang, and M. Ogura, “Highly dispersive mirror in Ta2O5/SiO2 for femtosecond lasers designed by inverse spectral theory,” Appl. Opt. 38(21), 4711–4719 (1999).
[CrossRef]

Appl. Phys. Lett. (14)

A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007).
[CrossRef]

A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005).
[CrossRef]

S. Lattante, F. Romano, A. P. Caricato, M. Martino, and M. Anni, “Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition,” Appl. Phys. Lett. 89(3), 1–3 (2006).
[CrossRef]

P. Gorm, T. Rabe, T. Riedl, and W. Kowalsky, “Loss reduction in fully contacted organic laser waveguides using TE2 modes,” Appl. Phys. Lett. 91, 1–3 (2007).

G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004).
[CrossRef]

V. G. Kozlov, P. E. Burrows, G. Parthasarathy, and S. R. Forrest, “Optical properties of molecular organic semiconductor thin films under intense electrical excitation,” Appl. Phys. Lett. 74(8), 1057–1059 (1999).
[CrossRef]

M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005).
[CrossRef]

H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001).
[CrossRef]

S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, and T. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities,” Appl. Phys. Lett. 65(18), 2308–2310 (1994).
[CrossRef]

Helvetica Physica Acta (1)

J. H. James, M. J. Proctro, C. Faure, W. Baer, and F. K. Reinhartf, “SiO2/TiO2 quarter wave dielectric mirrors for vertical cavity surface emitting lasers,” Helvetica Physica Acta 63, 513–514 (1990).

IEEE J. Quant. Electron. (1)

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000).
[CrossRef]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[CrossRef]

J. Appl. Phys. (1)

T. W. Lee, O. O. Park, H. N. Cho, D. Y. Kim, and Y. C. Kim, “Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends,” J. Appl. Phys. 93(3), 1367–1370 (2003).
[CrossRef]

J. Mod. Opt. (1)

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous Emission from Planar Microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

J. Phys.: Conference Series (1)

R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. MacLaren, and S. Rowan, “Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy,” J. Phys.: Conference Series 241, 012070 (2010).
[CrossRef]

K. Phys. Rev. Lett. (1)

S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997).
[CrossRef]

Mater (1)

B. Michael, D. McGehee, and A. J. Heeger, “Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,” adv,” Mater 12, 1655–1668 (2000).

Nature (2)

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389(6650), 466–469 (1997).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Opt. Express (1)

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

Opt. Mater. (1)

S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998).
[CrossRef]

Phys. Rev. (2)

M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, “Prospects for electrically pumped organic lasers,” Phys. Rev. 66, 1–16 (2002).

E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).

Science (2)

J. H. Schön, Ch. Kloc, A. Dodabalapur, and B. Batlogg, “An organic solid state injection laser,” Science 289(5479), 599–601 (2000).
[CrossRef] [PubMed]

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
[CrossRef] [PubMed]

Synth. Met. (2)

D. J. Pine, N. Tessler, and R. H. Friend, “Moving the recombination zone in two layer polymer LEDs using high voltage pulses,” Synth. Met. 102(1-3), 1108–1109 (1999).
[CrossRef]

N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000).
[CrossRef]

Thin Solid Films (1)

M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, and M. Aldissi, “High quality transparent conductive electrodes in organic photovoltaic devices,” Thin Solid Films 518(4), 1250–1253 (2009).
[CrossRef]

Other (3)

W. Rammal, and Ph. D. Thesis, “Réalisation de diodes électroluminescentes souples et caractérisations,” University of Limoges (France), Thesis N°1 (2006).

M. Punke, S. Mozer, M. Stroisch, M. Gerken, G. Bastian, and U. Lemmer, “Organic semiconductor devices for micro-optical applications,” Proc. of SPIE 6185, 618505 1–13 (2006).

S. A. Furman, and A. V. Tikhonravov, “Basic of optics of multilayer systems” (Ed.) Frontieres 1992.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Estimated threshold current density in optically pumped organic lasers versus the quality factor of the laser cavities [12, 2228]

Fig. 2
Fig. 2

Structure of the resonant OLED cavity.

Fig. 3
Fig. 3

The reflectance spectra of (TiO2,/SiO2) and (Ta2O5/SiO2) stacked mirrors.

Fig. 4
Fig. 4

The absorptance spectra of different stacked mirrors realized with different material couples.

Fig. 5
Fig. 5

OLED-cavity transmission spectra for different number of bilayers. Inset: the quality factor versus the mirrors bilayer number.

Fig. 6
Fig. 6

Reflectance and absorptance of the dielectric mirror with the [ITO (12 nm)/Ag (6 nm)/ITO (12 nm)] TCO tri-layer.

Fig. 7
Fig. 7

Electric field distribution inside the OLED

Fig. 8
Fig. 8

Schematic of the extended OLED-cavity

Fig. 9
Fig. 9

Impact of the extended cavity on the transmission spectra. The inset in Fig. 9(a) shows the quality factor of the microcavity versus spacer thickness.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J t h = q χ h υ τ I t h
L = n i d i + λ r e s 4 π ( φ t o p + φ b o t )
λ r e s 4 π ( φ t o p + φ b o t )
Q = λ Δ λ = 2 π L λ ( ln ( R t o p R b o t ) 0.5 ] 1

Metrics