Abstract

Polarization-independent broad-band absorbers in the visible regime are theoretically investigated. The absorbers are three-layered structures consisting of a lossy dielectric grating on top of a low-loss dielectric layer and a substrate of the same lossy dielectric placed at the bottom. Enhanced absorption in the underlying structure is attained over a broad range of frequency for both TE and TM polarizations. In particular, a nearly perfect absorbance (over 99.6%) is achieved at λ ≈ 600 nm, around which the absorption spectra show a substantial overlap between two polarizations. The enhanced absorption is attributed to cavity resonance and its hybridization with a weakly bound surface wave. This feature is illustrated with the electric field patterns and time-averaged power loss density associated with the resonances.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
    [CrossRef] [PubMed]
  2. F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
    [CrossRef]
  3. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
    [CrossRef]
  4. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  5. D. Crouse, and P. Keshavareddy, "Polarization independent enhanced optical transmission in one-dimensional gratings and device applications," Opt. Express 15, 1415-1427 (2007).
    [CrossRef] [PubMed]
  6. F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  7. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, "How holes can obscure the view: Suppressed transmission through an ultrathin metal film by a subwavelength hole array," Phys. Rev. Lett. 103, 203901 (2009).
    [CrossRef]
  8. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, "Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films," Phys. Rev. B 79, 161406 (2009).
    [CrossRef]
  9. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010).
    [CrossRef] [PubMed]
  10. V. G. Kravets, F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B 78, 205405 (2008).
    [CrossRef]
  11. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
    [CrossRef] [PubMed]
  12. N. C. Panoiu, J. Richard, and M. Osgood, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007).
    [CrossRef] [PubMed]
  13. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, "Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings," Appl. Phys. Lett. 96, 133302 (2010).
    [CrossRef]
  14. E. Rephaeli, and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit," Opt. Express 17, 15145-15159 (2009).
    [CrossRef] [PubMed]
  15. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Opt. Express 17, 22800-22812 (2009).
    [CrossRef]
  16. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett. 89, 151116 (2006).
    [CrossRef]
  17. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, "A multispectral and polarization-selective surface-plasmon resonant midinfrared detector," Appl. Phys. Lett. 95, 161101 (2009).
    [CrossRef]
  18. M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  19. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
    [CrossRef]
  20. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B 81, 165401 (2010).
    [CrossRef]
  21. C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, "Enhanced light trapping in thin-film solar cells by a directionally selective filter," Opt. Express 18, A133-A138 (2010).
    [CrossRef] [PubMed]
  22. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  23. C. Hu, Z. Zhao, X. Chen, and X. Luo, "Realizing near-perfect absorption at visible frequencies," Opt. Express 17, 11039-11044 (2009).
    [CrossRef] [PubMed]
  24. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
    [CrossRef]
  25. N. Bonod, and E. Popov, "Total light absorption in a wide range of incidence by nanostructured metals without plasmons," Opt. Lett. 33, 2398-2400 (2008).
    [CrossRef] [PubMed]
  26. L. Dai, and C. Jiang, "Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating," Opt. Express 17, 20502-20514 (2009).
    [CrossRef] [PubMed]
  27. M. Sarrazin, and J. P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003).
    [CrossRef]
  28. COMSOL Multiphysics 3.5a (2009).
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1998).
  30. A. Hessel, and A. A. Oliner, "A new theory of wood’s anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965).
    [CrossRef]
  31. A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
    [CrossRef]
  32. Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, "Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits," Appl. Phys. Lett. 93, 061102 (2008).
    [CrossRef]
  33. S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
    [CrossRef]
  34. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and D. M. Robinson, "Remarkable transmission of microwaves through a wall of long metallic bricks," Appl. Phys. Lett. 79, 2844-2846 (2001).
    [CrossRef]
  35. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  36. X. R. Huang, and R. W. Peng, "General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference," J. Opt. Soc. Am. A 27, 718-729 (2010).
    [CrossRef]

2010 (6)

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010).
[CrossRef] [PubMed]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, "Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings," Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B 81, 165401 (2010).
[CrossRef]

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, "Enhanced light trapping in thin-film solar cells by a directionally selective filter," Opt. Express 18, A133-A138 (2010).
[CrossRef] [PubMed]

X. R. Huang, and R. W. Peng, "General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference," J. Opt. Soc. Am. A 27, 718-729 (2010).
[CrossRef]

2009 (10)

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, "A multispectral and polarization-selective surface-plasmon resonant midinfrared detector," Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Phys. Rev. B 79, 033101 (2009).
[CrossRef]

C. Hu, Z. Zhao, X. Chen, and X. Luo, "Realizing near-perfect absorption at visible frequencies," Opt. Express 17, 11039-11044 (2009).
[CrossRef] [PubMed]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
[CrossRef]

L. Dai, and C. Jiang, "Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating," Opt. Express 17, 20502-20514 (2009).
[CrossRef] [PubMed]

E. Rephaeli, and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit," Opt. Express 17, 15145-15159 (2009).
[CrossRef] [PubMed]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Opt. Express 17, 22800-22812 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
[CrossRef] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, "How holes can obscure the view: Suppressed transmission through an ultrathin metal film by a subwavelength hole array," Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, "Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films," Phys. Rev. B 79, 161406 (2009).
[CrossRef]

2008 (4)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B 78, 205405 (2008).
[CrossRef]

N. Bonod, and E. Popov, "Total light absorption in a wide range of incidence by nanostructured metals without plasmons," Opt. Lett. 33, 2398-2400 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, "Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits," Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

2007 (4)

N. C. Panoiu, J. Richard, and M. Osgood, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007).
[CrossRef] [PubMed]

D. Crouse, and P. Keshavareddy, "Polarization independent enhanced optical transmission in one-dimensional gratings and device applications," Opt. Express 15, 1415-1427 (2007).
[CrossRef] [PubMed]

C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
[CrossRef]

2006 (1)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

2005 (2)

A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
[CrossRef]

2003 (1)

M. Sarrazin, and J. P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003).
[CrossRef]

2002 (1)

F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

2001 (1)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and D. M. Robinson, "Remarkable transmission of microwaves through a wall of long metallic bricks," Appl. Phys. Lett. 79, 2844-2846 (2001).
[CrossRef]

2000 (1)

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

1965 (1)

A. Hessel, and A. A. Oliner, "A new theory of wood’s anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965).
[CrossRef]

Agrawal, M.

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Opt. Express 17, 22800-22812 (2009).
[CrossRef]

Astilean, S.

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010).
[CrossRef] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
[CrossRef] [PubMed]

Bezuglyi, E. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, "Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films," Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Bläsi, B.

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, "Enhanced light trapping in thin-film solar cells by a directionally selective filter," Opt. Express 18, A133-A138 (2010).
[CrossRef] [PubMed]

Bonod, N.

N. Bonod, and E. Popov, "Total light absorption in a wide range of incidence by nanostructured metals without plasmons," Opt. Lett. 33, 2398-2400 (2008).
[CrossRef] [PubMed]

Borisov, A. G.

A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
[CrossRef]

Braun, J.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, "How holes can obscure the view: Suppressed transmission through an ultrathin metal film by a subwavelength hole array," Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010).
[CrossRef] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010).
[CrossRef] [PubMed]

Chandran, A.

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
[CrossRef] [PubMed]

Chen, X.

C. Hu, Z. Zhao, X. Chen, and X. Luo, "Realizing near-perfect absorption at visible frequencies," Opt. Express 17, 11039-11044 (2009).
[CrossRef] [PubMed]

Cho, M. H.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, "Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits," Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

Crouse, D.

D. Crouse, and P. Keshavareddy, "Polarization independent enhanced optical transmission in one-dimensional gratings and device applications," Opt. Express 15, 1415-1427 (2007).
[CrossRef] [PubMed]

Dai, L.

L. Dai, and C. Jiang, "Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating," Opt. Express 17, 20502-20514 (2009).
[CrossRef] [PubMed]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Dressel, M.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, "How holes can obscure the view: Suppressed transmission through an ultrathin metal film by a subwavelength hole array," Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

Ebbesen, T. W.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Fan, S.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, "Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings," Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
[CrossRef] [PubMed]

E. Rephaeli, and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit," Opt. Express 17, 15145-15159 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
[CrossRef]

A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Genet, C.

C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Gerber, A.

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, "Enhanced light trapping in thin-film solar cells by a directionally selective filter," Opt. Express 18, A133-A138 (2010).
[CrossRef] [PubMed]

Gompf, B.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, "How holes can obscure the view: Suppressed transmission through an ultrathin metal film by a subwavelength hole array," Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B 81, 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Hessel, A.

A. Hessel, and A. A. Oliner, "A new theory of wood’s anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and D. M. Robinson, "Remarkable transmission of microwaves through a wall of long metallic bricks," Appl. Phys. Lett. 79, 2844-2846 (2001).
[CrossRef]

Hu, C.

C. Hu, Z. Zhao, X. Chen, and X. Luo, "Realizing near-perfect absorption at visible frequencies," Opt. Express 17, 11039-11044 (2009).
[CrossRef] [PubMed]

Huang, X. R.

X. R. Huang, and R. W. Peng, "General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference," J. Opt. Soc. Am. A 27, 718-729 (2010).
[CrossRef]

Jiang, C.

L. Dai, and C. Jiang, "Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating," Opt. Express 17, 20502-20514 (2009).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010).
[CrossRef] [PubMed]

Kats, A. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, "Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films," Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Keshavareddy, P.

D. Crouse, and P. Keshavareddy, "Polarization independent enhanced optical transmission in one-dimensional gratings and device applications," Opt. Express 15, 1415-1427 (2007).
[CrossRef] [PubMed]

Kirchartz, T.

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, "Enhanced light trapping in thin-film solar cells by a directionally selective filter," Opt. Express 18, A133-A138 (2010).
[CrossRef] [PubMed]

Kobiela, G.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, "How holes can obscure the view: Suppressed transmission through an ultrathin metal film by a subwavelength hole array," Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Kravets, A. F.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B 81, 165401 (2010).
[CrossRef]

Kravets, V. G.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B 81, 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Krishna, S.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, "A multispectral and polarization-selective surface-plasmon resonant midinfrared detector," Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Kuipers, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

Lalanne, P.

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and D. M. Robinson, "Remarkable transmission of microwaves through a wall of long metallic bricks," Appl. Phys. Lett. 79, 2844-2846 (2001).
[CrossRef]

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, "Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings," Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Lee, Y.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, "Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits," Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

Levchenko, A.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, "Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films," Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, "Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings," Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Lu, Y.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, "Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits," Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

Luo, X.

C. Hu, Z. Zhao, X. Chen, and X. Luo, "Realizing near-perfect absorption at visible frequencies," Opt. Express 17, 11039-11044 (2009).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, "Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings," Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Neubeck, S.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B 81, 165401 (2010).
[CrossRef]

Nikitin, A. Y.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, "Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films," Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Oliner, A. A.

A. Hessel, and A. A. Oliner, "A new theory of wood’s anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965).
[CrossRef]

Osgood, M.

N. C. Panoiu, J. Richard, and M. Osgood, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007).
[CrossRef] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, "A multispectral and polarization-selective surface-plasmon resonant midinfrared detector," Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Palamaru, M.

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Panoiu, N. C.

N. C. Panoiu, J. Richard, and M. Osgood, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007).
[CrossRef] [PubMed]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Peng, R. W.

X. R. Huang, and R. W. Peng, "General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference," J. Opt. Soc. Am. A 27, 718-729 (2010).
[CrossRef]

Peters, M.

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, "Enhanced light trapping in thin-film solar cells by a directionally selective filter," Opt. Express 18, A133-A138 (2010).
[CrossRef] [PubMed]

Peumans, P.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, "Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings," Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Opt. Express 17, 22800-22812 (2009).
[CrossRef]

Pincon, O.

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Opt. Express 17, 22800-22812 (2009).
[CrossRef]

Popov, E.

N. Bonod, and E. Popov, "Total light absorption in a wide range of incidence by nanostructured metals without plasmons," Opt. Lett. 33, 2398-2400 (2008).
[CrossRef] [PubMed]

Popov, V. V.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Rau, U.

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, "Enhanced light trapping in thin-film solar cells by a directionally selective filter," Opt. Express 18, A133-A138 (2010).
[CrossRef] [PubMed]

Rephaeli, E.

E. Rephaeli, and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit," Opt. Express 17, 15145-15159 (2009).
[CrossRef] [PubMed]

Rhee, J. Y.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, "Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits," Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

Richard, J.

N. C. Panoiu, J. Richard, and M. Osgood, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007).
[CrossRef] [PubMed]

Robinson, D. M.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and D. M. Robinson, "Remarkable transmission of microwaves through a wall of long metallic bricks," Appl. Phys. Lett. 79, 2844-2846 (2001).
[CrossRef]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, "A multispectral and polarization-selective surface-plasmon resonant midinfrared detector," Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and D. M. Robinson, "Remarkable transmission of microwaves through a wall of long metallic bricks," Appl. Phys. Lett. 79, 2844-2846 (2001).
[CrossRef]

Sarrazin, M.

M. Sarrazin, and J. P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010).
[CrossRef] [PubMed]

Sergeant, N. P.

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Opt. Express 17, 22800-22812 (2009).
[CrossRef]

Shabanov, S. V.

A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
[CrossRef]

Shenoi, R. V.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, "A multispectral and polarization-selective surface-plasmon resonant midinfrared detector," Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Spevak, I. S.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, "Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films," Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Teperik, T. V.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
[CrossRef]

Ulbrich, C.

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, "Enhanced light trapping in thin-film solar cells by a directionally selective filter," Opt. Express 18, A133-A138 (2010).
[CrossRef] [PubMed]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, "A multispectral and polarization-selective surface-plasmon resonant midinfrared detector," Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, "Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings," Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Vigneron, J. P.

M. Sarrazin, and J. P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010).
[CrossRef] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
[CrossRef] [PubMed]

Yu, Z.

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Zhao, Z.

C. Hu, Z. Zhao, X. Chen, and X. Luo, "Realizing near-perfect absorption at visible frequencies," Opt. Express 17, 11039-11044 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

A. Hessel, and A. A. Oliner, "A new theory of wood’s anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965).
[CrossRef]

Appl. Phys. Lett. (5)

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, "Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits," Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and D. M. Robinson, "Remarkable transmission of microwaves through a wall of long metallic bricks," Appl. Phys. Lett. 79, 2844-2846 (2001).
[CrossRef]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, "Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings," Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, "A multispectral and polarization-selective surface-plasmon resonant midinfrared detector," Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

X. R. Huang, and R. W. Peng, "General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference," J. Opt. Soc. Am. A 27, 718-729 (2010).
[CrossRef]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010).
[CrossRef] [PubMed]

Nature (1)

C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Opt. Express (6)

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, "Enhanced light trapping in thin-film solar cells by a directionally selective filter," Opt. Express 18, A133-A138 (2010).
[CrossRef] [PubMed]

C. Hu, Z. Zhao, X. Chen, and X. Luo, "Realizing near-perfect absorption at visible frequencies," Opt. Express 17, 11039-11044 (2009).
[CrossRef] [PubMed]

L. Dai, and C. Jiang, "Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating," Opt. Express 17, 20502-20514 (2009).
[CrossRef] [PubMed]

D. Crouse, and P. Keshavareddy, "Polarization independent enhanced optical transmission in one-dimensional gratings and device applications," Opt. Express 15, 1415-1427 (2007).
[CrossRef] [PubMed]

E. Rephaeli, and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit," Opt. Express 17, 15145-15159 (2009).
[CrossRef] [PubMed]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Opt. Express 17, 22800-22812 (2009).
[CrossRef]

Opt. Lett. (3)

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
[CrossRef] [PubMed]

N. C. Panoiu, J. Richard, and M. Osgood, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007).
[CrossRef] [PubMed]

N. Bonod, and E. Popov, "Total light absorption in a wide range of incidence by nanostructured metals without plasmons," Opt. Lett. 33, 2398-2400 (2008).
[CrossRef] [PubMed]

Phys. Rev. B (8)

A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Phys. Rev. B 79, 033101 (2009).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005).
[CrossRef]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B 81, 165401 (2010).
[CrossRef]

F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B 78, 205405 (2008).
[CrossRef]

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, "Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films," Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Phys. Rev. E (1)

M. Sarrazin, and J. P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, "How holes can obscure the view: Suppressed transmission through an ultrathin metal film by a subwavelength hole array," Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

Rev. Mod. Phys. (2)

F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

Other (3)

COMSOL Multiphysics 3.5a (2009).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1998).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the light absorber consisting of a grating layer and a substrate made of tungsten (W), spaced by a polysilicon (p-Si) slab, where p is the grating period, b is the grating depth, a is the slit width, w = pa, h is the p-Si slab thickness, and t is the W substrate thickness.

Fig. 2
Fig. 2

Absorbance of the light absorber as sketched in Fig. 1 for TE and TM polarizations, where p = 500 nm, a = 330 nm, b = 420 nm, h = 497 nm and t = 200 nm.

Fig. 3
Fig. 3

Absorbance as a function of wavelength and angle of incidence for the same absorber in Fig. 2 for (a) TE polarization and (b) TM polarization. White dashed lines indicate the onset of grating lobes with nonzero diffraction order m. Black solid triangles denote the absorption peaks (A > 0.9) at different angles of incidence.

Fig. 4
Fig. 4

Contours of the electric field Ez at (a) λ ≈ 600 nm (TE11-like mode) associated with the absorption peak and (b) λ ≈ 407 nm (TE12-like mode) for the same absorber in Fig. 2 for TE polarization. In (b), the black arrows denote the directions of diffraction order m = ±1.

Fig. 5
Fig. 5

(a) Contours of horizontal electric field Ex and (b) vertical electric field Ey associated with the absorption peak at λ ≈ 609 nm for the same absorber in Fig. 2 for TM polarization.

Fig. 6
Fig. 6

Contours of the time-averaged power loss density dPloss/dV associated with the absorption peaks for the same absorber in Fig. 2 at (a) λ ≈ 600 nm for TE polarization and (b) λ ≈ 609 nm for TM polarization. In (b), the alignment of surface charges are denoted by symbols “+” and “−”.

Fig. 7
Fig. 7

Ratios of the time-averaged power loss Ploss in different layers of the same absorber in Fig. 2 for (a) TE polarization and (b) TM polarization.

Fig. 8
Fig. 8

Dependence of absorbance on (a) the grating period p and (b) the slit width a for TE polarization (left plots) and TM polarization (right plots). All geometry parameters are the same as in Fig. 2 except the grating period p for (a) and the slit width a for (b). In each plot, the white circle denotes the absorption peak for the optimized structure in Fig 2.

Fig. 9
Fig. 9

Dependence of absorbance on (a) the grating depth b and (b) the p-Si layer thickness h for TE polarization (left plots) and TM polarization (right plots). All geometry parameters are the same as in Fig. 2 except the grating depth b for (a) and p-Si layer thickness h. In each plot, the white circle denotes the absorption peak for the optimized structure in Fig 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin θ m = sin θ + m λ p ,
λ mn = 2 ( m / a ) 2 + ( n / b ) 2 ,

Metrics