Abstract

A type of fiber laser, called tilted Bragg reflector fiber laser (TBR-FL), is proposed and its application in simultaneous sensing of surrounding refractive index (SRI) and temperature is demonstrated. This FL is formed by a pair of wavelength and tilt-angle matched tilted fiber Bragg gratings (TFBGs) that acted both as a resonant cavity and sensing element. A unique spectral feature of the TBR-FL is the presence of grating tilt-induced cladding modes spectrum that does not appear in other type of FL, which provides an extra sensing mechanism. By employing a simple experimental setup with the discrete wavelet transform as the demodulation technique, simultaneously sensing of SRI and temperature are achieved by measuring and analyzing the wavelet coefficients shifts of the laser output and averaged cladding modes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Frazão, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Technol. 24(3), 227–244 (2005).
    [CrossRef]
  2. Y. Zhao and Y. B. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
    [CrossRef]
  3. J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38(13), 2749–2751 (1999).
    [CrossRef]
  4. J. Jung, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single fiber Bragg grating written in an erbium:ytterbium-doped fiber,” Appl. Opt. 39(7), 1118–1120 (2000).
    [CrossRef]
  5. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
    [CrossRef]
  6. T. V. Djambova and T. Mizunami, “Simultaneous sensing of temperature and displacement using a multimode fiber Bragg grating,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1566–1570 (2000).
    [CrossRef]
  7. C. L. Zhao, X. Yang, M. S. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
    [CrossRef]
  8. Y. Miao, B. Liu, and Q. Zhao, “Simultaneous measurement of strain and temperature using single tilted fibre Bragg grating,” Electron. Lett. 44(21), 1242 (2008).
    [CrossRef]
  9. Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett. 30(11), 1282–1284 (2005).
    [CrossRef] [PubMed]
  10. T. V. A. Tran, Y. G. Han, S. H. Kim, and S. B. Lee, “Long-distance simultaneous measurement of strain and temperature based on a fiber Raman laser with a single fiber Bragg grating embedded on a quartz plate,” Opt. Lett. 30(13), 1632–1634 (2005).
    [CrossRef] [PubMed]
  11. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
    [CrossRef]
  12. O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
    [CrossRef]
  13. P. Childs, A. C. L. Wong, I. Leung, G. D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
    [CrossRef]
  14. A. C. L. Wong, P. A. Childs, and G. D. Peng, “Simultaneous demodulation technique for a multiplexed fiber Fizeau interferometer and fiber Bragg grating sensor system,” Opt. Lett. 31(1), 23–25 (2006).
    [CrossRef] [PubMed]
  15. A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
    [CrossRef]
  16. Y. Miao, B. Liu, S. Tian, and Q. Zhao, “Temperature-insensitive refractive index sensor based on tilted fiber Bragg grating,” Microw. Opt. Technol. Lett. 51(2), 479–483 (2009).
    [CrossRef]
  17. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]

2009 (1)

Y. Miao, B. Liu, S. Tian, and Q. Zhao, “Temperature-insensitive refractive index sensor based on tilted fiber Bragg grating,” Microw. Opt. Technol. Lett. 51(2), 479–483 (2009).
[CrossRef]

2008 (2)

P. Childs, A. C. L. Wong, I. Leung, G. D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[CrossRef]

Y. Miao, B. Liu, and Q. Zhao, “Simultaneous measurement of strain and temperature using single tilted fibre Bragg grating,” Electron. Lett. 44(21), 1242 (2008).
[CrossRef]

2007 (1)

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

2006 (3)

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Simultaneous demodulation technique for a multiplexed fiber Fizeau interferometer and fiber Bragg grating sensor system,” Opt. Lett. 31(1), 23–25 (2006).
[CrossRef] [PubMed]

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

C. L. Zhao, X. Yang, M. S. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[CrossRef]

2005 (3)

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett. 30(11), 1282–1284 (2005).
[CrossRef] [PubMed]

T. V. A. Tran, Y. G. Han, S. H. Kim, and S. B. Lee, “Long-distance simultaneous measurement of strain and temperature based on a fiber Raman laser with a single fiber Bragg grating embedded on a quartz plate,” Opt. Lett. 30(13), 1632–1634 (2005).
[CrossRef] [PubMed]

O. Frazão, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Technol. 24(3), 227–244 (2005).
[CrossRef]

2004 (1)

Y. Zhao and Y. B. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[CrossRef]

2001 (2)

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[CrossRef]

O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
[CrossRef]

2000 (2)

J. Jung, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single fiber Bragg grating written in an erbium:ytterbium-doped fiber,” Appl. Opt. 39(7), 1118–1120 (2000).
[CrossRef]

T. V. Djambova and T. Mizunami, “Simultaneous sensing of temperature and displacement using a multimode fiber Bragg grating,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1566–1570 (2000).
[CrossRef]

1999 (2)

J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38(13), 2749–2751 (1999).
[CrossRef]

O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
[CrossRef]

Albert, J.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Araujo, F. M.

O. Frazão, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Technol. 24(3), 227–244 (2005).
[CrossRef]

Bennion, I.

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[CrossRef]

Chan, C. F.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Chen, C.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Childs, P.

P. Childs, A. C. L. Wong, I. Leung, G. D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[CrossRef]

Childs, P. A.

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Simultaneous demodulation technique for a multiplexed fiber Fizeau interferometer and fiber Bragg grating sensor system,” Opt. Lett. 31(1), 23–25 (2006).
[CrossRef] [PubMed]

Demokan, M. S.

C. L. Zhao, X. Yang, M. S. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[CrossRef]

Djambova, T. V.

T. V. Djambova and T. Mizunami, “Simultaneous sensing of temperature and displacement using a multimode fiber Bragg grating,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1566–1570 (2000).
[CrossRef]

Ferreira, L. A.

O. Frazão, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Technol. 24(3), 227–244 (2005).
[CrossRef]

Frazão, O.

O. Frazão, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Technol. 24(3), 227–244 (2005).
[CrossRef]

Gwandu, B. A. L.

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[CrossRef]

Hadeler, O.

O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
[CrossRef]

O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
[CrossRef]

Han, Y. G.

T. V. A. Tran, Y. G. Han, S. H. Kim, and S. B. Lee, “Long-distance simultaneous measurement of strain and temperature based on a fiber Raman laser with a single fiber Bragg grating embedded on a quartz plate,” Opt. Lett. 30(13), 1632–1634 (2005).
[CrossRef] [PubMed]

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett. 30(11), 1282–1284 (2005).
[CrossRef] [PubMed]

Ibsen, M.

O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
[CrossRef]

O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
[CrossRef]

Jafari, A.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Jin, W.

C. L. Zhao, X. Yang, M. S. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[CrossRef]

Jung, J.

J. Jung, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single fiber Bragg grating written in an erbium:ytterbium-doped fiber,” Appl. Opt. 39(7), 1118–1120 (2000).
[CrossRef]

J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38(13), 2749–2751 (1999).
[CrossRef]

Kim, S. H.

T. V. A. Tran, Y. G. Han, S. H. Kim, and S. B. Lee, “Long-distance simultaneous measurement of strain and temperature based on a fiber Raman laser with a single fiber Bragg grating embedded on a quartz plate,” Opt. Lett. 30(13), 1632–1634 (2005).
[CrossRef] [PubMed]

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett. 30(11), 1282–1284 (2005).
[CrossRef] [PubMed]

Laming, R. I.

O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
[CrossRef]

Laronche, A.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Lee, B.

J. Jung, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single fiber Bragg grating written in an erbium:ytterbium-doped fiber,” Appl. Opt. 39(7), 1118–1120 (2000).
[CrossRef]

J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38(13), 2749–2751 (1999).
[CrossRef]

Lee, J. H.

J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38(13), 2749–2751 (1999).
[CrossRef]

Lee, S. B.

T. V. A. Tran, Y. G. Han, S. H. Kim, and S. B. Lee, “Long-distance simultaneous measurement of strain and temperature based on a fiber Raman laser with a single fiber Bragg grating embedded on a quartz plate,” Opt. Lett. 30(13), 1632–1634 (2005).
[CrossRef] [PubMed]

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett. 30(11), 1282–1284 (2005).
[CrossRef] [PubMed]

Leung, I.

P. Childs, A. C. L. Wong, I. Leung, G. D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[CrossRef]

Liao, Y. B.

P. Childs, A. C. L. Wong, I. Leung, G. D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[CrossRef]

Y. Zhao and Y. B. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[CrossRef]

Liu, B.

Y. Miao, B. Liu, S. Tian, and Q. Zhao, “Temperature-insensitive refractive index sensor based on tilted fiber Bragg grating,” Microw. Opt. Technol. Lett. 51(2), 479–483 (2009).
[CrossRef]

Y. Miao, B. Liu, and Q. Zhao, “Simultaneous measurement of strain and temperature using single tilted fibre Bragg grating,” Electron. Lett. 44(21), 1242 (2008).
[CrossRef]

Liu, Y.

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[CrossRef]

Miao, Y.

Y. Miao, B. Liu, S. Tian, and Q. Zhao, “Temperature-insensitive refractive index sensor based on tilted fiber Bragg grating,” Microw. Opt. Technol. Lett. 51(2), 479–483 (2009).
[CrossRef]

Y. Miao, B. Liu, and Q. Zhao, “Simultaneous measurement of strain and temperature using single tilted fibre Bragg grating,” Electron. Lett. 44(21), 1242 (2008).
[CrossRef]

Mizunami, T.

T. V. Djambova and T. Mizunami, “Simultaneous sensing of temperature and displacement using a multimode fiber Bragg grating,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1566–1570 (2000).
[CrossRef]

Nam, H.

J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38(13), 2749–2751 (1999).
[CrossRef]

Park, N.

J. Jung, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single fiber Bragg grating written in an erbium:ytterbium-doped fiber,” Appl. Opt. 39(7), 1118–1120 (2000).
[CrossRef]

J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38(13), 2749–2751 (1999).
[CrossRef]

Peng, G. D.

P. Childs, A. C. L. Wong, I. Leung, G. D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[CrossRef]

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Simultaneous demodulation technique for a multiplexed fiber Fizeau interferometer and fiber Bragg grating sensor system,” Opt. Lett. 31(1), 23–25 (2006).
[CrossRef] [PubMed]

Rønnekleiv, E.

O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
[CrossRef]

Santos, J. L.

O. Frazão, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Technol. 24(3), 227–244 (2005).
[CrossRef]

Shu, X.

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[CrossRef]

Thomson, D. J.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Tian, S.

Y. Miao, B. Liu, S. Tian, and Q. Zhao, “Temperature-insensitive refractive index sensor based on tilted fiber Bragg grating,” Microw. Opt. Technol. Lett. 51(2), 479–483 (2009).
[CrossRef]

Tran, T. V. A.

T. V. A. Tran, Y. G. Han, S. H. Kim, and S. B. Lee, “Long-distance simultaneous measurement of strain and temperature based on a fiber Raman laser with a single fiber Bragg grating embedded on a quartz plate,” Opt. Lett. 30(13), 1632–1634 (2005).
[CrossRef] [PubMed]

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett. 30(11), 1282–1284 (2005).
[CrossRef] [PubMed]

Wong, A. C. L.

P. Childs, A. C. L. Wong, I. Leung, G. D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[CrossRef]

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Simultaneous demodulation technique for a multiplexed fiber Fizeau interferometer and fiber Bragg grating sensor system,” Opt. Lett. 31(1), 23–25 (2006).
[CrossRef] [PubMed]

Yang, X.

C. L. Zhao, X. Yang, M. S. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[CrossRef]

Zervas, M. N.

O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
[CrossRef]

Zhang, L.

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[CrossRef]

Zhao, C. L.

C. L. Zhao, X. Yang, M. S. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[CrossRef]

Zhao, Q.

Y. Miao, B. Liu, S. Tian, and Q. Zhao, “Temperature-insensitive refractive index sensor based on tilted fiber Bragg grating,” Microw. Opt. Technol. Lett. 51(2), 479–483 (2009).
[CrossRef]

Y. Miao, B. Liu, and Q. Zhao, “Simultaneous measurement of strain and temperature using single tilted fibre Bragg grating,” Electron. Lett. 44(21), 1242 (2008).
[CrossRef]

Zhao, Y.

Y. Zhao and Y. B. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[CrossRef]

Appl. Opt. (5)

J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38(13), 2749–2751 (1999).
[CrossRef]

J. Jung, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single fiber Bragg grating written in an erbium:ytterbium-doped fiber,” Appl. Opt. 39(7), 1118–1120 (2000).
[CrossRef]

O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
[CrossRef]

O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
[CrossRef]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Electron. Lett. (1)

Y. Miao, B. Liu, and Q. Zhao, “Simultaneous measurement of strain and temperature using single tilted fibre Bragg grating,” Electron. Lett. 44(21), 1242 (2008).
[CrossRef]

Fiber Integr. Technol. (1)

O. Frazão, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Integr. Technol. 24(3), 227–244 (2005).
[CrossRef]

J. Lightwave Technol. (1)

C. L. Zhao, X. Yang, M. S. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. V. Djambova and T. Mizunami, “Simultaneous sensing of temperature and displacement using a multimode fiber Bragg grating,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1566–1570 (2000).
[CrossRef]

Meas. Sci. Technol. (2)

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

P. Childs, A. C. L. Wong, I. Leung, G. D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Y. Miao, B. Liu, S. Tian, and Q. Zhao, “Temperature-insensitive refractive index sensor based on tilted fiber Bragg grating,” Microw. Opt. Technol. Lett. 51(2), 479–483 (2009).
[CrossRef]

Opt. Lasers Eng. (1)

Y. Zhao and Y. B. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[CrossRef]

Opt. Lett. (4)

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[CrossRef]

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett. 30(11), 1282–1284 (2005).
[CrossRef] [PubMed]

T. V. A. Tran, Y. G. Han, S. H. Kim, and S. B. Lee, “Long-distance simultaneous measurement of strain and temperature based on a fiber Raman laser with a single fiber Bragg grating embedded on a quartz plate,” Opt. Lett. 30(13), 1632–1634 (2005).
[CrossRef] [PubMed]

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Simultaneous demodulation technique for a multiplexed fiber Fizeau interferometer and fiber Bragg grating sensor system,” Opt. Lett. 31(1), 23–25 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Structure of the TBR-FL, (b) transmission spectrum of the high reflector grating, and (c) output spectrum of the TBR-FL.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

(a) Full spectrum of the TBR-FL sensor; and the magnification around (b) the laser output and (c) cladding modes spectrum.

Fig. 4
Fig. 4

Wavelet coefficients of a measured TBR-FL transmission spectrum: (a) 6th-level detail coefficients for the cladding modes, and (b) 2nd-level approximation coefficients for the Bragg mode. Dotted lines are the original spectra (manually offset) for comparison.

Fig. 5
Fig. 5

Wavelet coefficients shift of the laser output and averaged cladding modes as a function of temperature. Lines are the linear regression fits. The cladding modes curve is manually offset by 0.05 nm for ease of viewing.

Fig. 6
Fig. 6

Wavelet coefficients shift of the laser output and averaged cladding modes as a function of refractive index. Lines are the linear and 4th-degree polynomial regression fits, respectively.

Metrics