Abstract

The generation of surface plasmon resonances (SPRs) in gold-coated weakly tilted fiber Bragg gratings (TFBGs) strongly depends on the state of polarization of the core guided light. Recently, it was demonstrated that rotating the linear state of polarization of the guided light by 90° with respect to the grating tilt allows to turn the SPR on and off. In this work, we measure the Jones matrix associated to the TFBG transmission properties in order to be able to analyze different polarization-related parameters (i.e. dependency on wavelength of polarization dependent loss and first Stokes parameter). As they contain the information about the SPR, they can be used as a robust and accurate demodulation technique for refractometry purposes. Unlike other methods reported so far, a tight control of the input state of polarization is not required. The maximum error on refractive index measurement has been determined to be ~1 10−5 refractive index unit (RIU), 5 times better than intensity-based measurements on the same sensors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16(9), 1606–1612 (1998).
    [Crossref]
  2. G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
    [Crossref]
  3. C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
    [Crossref]
  4. T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
    [Crossref]
  5. S. Baek, Y. Jeong, and B. Lee, “Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors,” Appl. Opt. 41(4), 631–636 (2002).
    [Crossref] [PubMed]
  6. D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
    [Crossref]
  7. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [Crossref] [PubMed]
  8. Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [Crossref] [PubMed]
  9. B. Špačková, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 139(1), 199–203 (2009).
    [Crossref]
  10. Y.-C. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” J. Lightwave Technol. 28(11), 1677–1684 (2010).
    [Crossref]
  11. C. Caucheteur, S. Bette, R. Garcia, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
    [Crossref]
  12. C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
    [Crossref]
  13. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16505 .
    [Crossref] [PubMed]

2010 (2)

2009 (3)

2008 (2)

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

2007 (2)

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[Crossref] [PubMed]

2005 (1)

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

2002 (1)

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

1998 (1)

Albert, J.

Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[Crossref] [PubMed]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[Crossref] [PubMed]

Baek, S.

Bette, S.

C. Caucheteur, S. Bette, R. Garcia, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Bucholtz, F.

Campopiano, S.

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

Capmany, J.

Caucheteur, C.

C. Caucheteur, S. Bette, R. Garcia, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

Chen, C.

Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[Crossref] [PubMed]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Cusano, A.

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

Dakka, M. A.

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Garcia, R.

Geng, R.

Guo, T.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

Homola, J.

B. Špačková, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 139(1), 199–203 (2009).
[Crossref]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16505 .
[Crossref] [PubMed]

Jeong, Y.

Jian, S.

Kersey, A. D.

Kvasnicka, P.

B. Špačková, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 139(1), 199–203 (2009).
[Crossref]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Laronche, A.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

Lee, B.

Liu, C.

Lu, Y.-C.

Mégret, P.

C. Caucheteur, S. Bette, R. Garcia, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

Ning, T.

Paladino, D.

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

Patrick, H. J.

Piliarik, M.

B. Špačková, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 139(1), 199–203 (2009).
[Crossref]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16505 .
[Crossref] [PubMed]

Pilla, P.

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

Rajarajan, M.

B. Špačková, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 139(1), 199–203 (2009).
[Crossref]

Sales, S.

Shevchenko, Y. Y.

Špacková, B.

B. Špačková, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 139(1), 199–203 (2009).
[Crossref]

Themistos, C.

B. Špačková, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 139(1), 199–203 (2009).
[Crossref]

Wang, C.

Wuilpart, M.

C. Caucheteur, S. Bette, R. Garcia, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Zhang, F.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (4)

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nano-coated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization dependent loss measurement,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Sens. Actuators B Chem. (1)

B. Špačková, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 139(1), 199–203 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Orthogonal amplitude spectra (a), PDL (b) and first normalized Stokes evolution (c) for a 10° TFBG immersed in oil.

Fig. 2
Fig. 2

PDL evolution with wavelength as a function of the SRI.

Fig. 3
Fig. 3

s1 evolution with wavelength as a function of the SRI.

Fig. 4
Fig. 4

Computation of the PDL upper envelope.

Fig. 5
Fig. 5

Shift of the SPR wavelength as a function of the SRI. The straight line is a best fit to the data points.

Fig. 6
Fig. 6

PDL curves for some SRI values around 1.34. Left: zoom on a downward peak close to the SPR signature. Right: zoom on a peak around 1580 nm.

Fig. 7
Fig. 7

SPR wavelength shift as a function of the SRI.

Fig. 8
Fig. 8

Histogram resulting from the repeatability test.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J TFBG ( λ ) = ( a ( λ ) b ( λ ) c ( λ ) d ( λ ) )
J TFBG ( λ ) = ( t x ( λ ) 0 0 t y ( λ ) )
T T F B G ( λ ) = T x ( λ ) cos 2 θ + T y ( λ ) sin 2 θ
s 1 ( λ ) = T x ( λ ) cos 2 θ T y ( λ ) sin 2 θ T x ( λ ) cos 2 θ + T y ( λ ) sin 2 θ
P D L ( λ ) = | 10 log 10 ( T x ( λ ) T x ( λ ) ) |

Metrics