Abstract

Metal nanoparticles allow for surface-enhanced Raman scattering (SERS), with applications including spectroscopy and highly-multiplexed biolabels. Despite advances in nanoparticles design nanoparticles, the SERS from these systems is still weak when compared with randomly roughened substrates, and this limits their efficacy for many applications. Here, we coherently boost the SERS signal of colloidally-synthesized silver nano-prisms over 50 × by using multilayer substrates. Theoretical calculations verify the enhancement, and uncover the near-field response. This points the way toward a versatile platform for greater SERS enhancement from nanoparticles.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  2. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  3. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [CrossRef] [PubMed]
  4. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
    [CrossRef]
  5. A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods 53(2), 221–233 (2003).
    [CrossRef] [PubMed]
  6. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
    [CrossRef] [PubMed]
  7. X. Y. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
    [CrossRef] [PubMed]
  8. J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, “Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids,” Anal. Chem. 71(21), 4903–4908 (1999).
    [CrossRef] [PubMed]
  9. L. D. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309(5731), 113–115 (2005).
    [CrossRef] [PubMed]
  10. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
    [CrossRef]
  11. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]
  12. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
    [CrossRef] [PubMed]
  13. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [CrossRef]
  14. M. Moskovits, “Surface-Enhanced Spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [CrossRef]
  15. L. C. T. Shoute, “Multilayer substrate-mediated tuning resonance of plasmon and SERS EF of nanostructured silver,” ChemPhysChem 11(12), 2539–2545 (2010).
    [CrossRef] [PubMed]
  16. L. C. T. Shoute, A. J. Bergren, A. M. Mahmoud, K. D. Harris, and R. L. McCreery, “Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 63(2), 133–140 (2009).
    [CrossRef] [PubMed]
  17. H. C. Kim and X. Cheng, “SERS-active substrate based on gap surface plasmon polaritons,” Opt. Express 17(20), 17234–17241 (2009).
    [CrossRef] [PubMed]
  18. L. P. Du, X. J. Zhang, T. Mei, and X. C. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
    [CrossRef] [PubMed]
  19. J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
    [CrossRef] [PubMed]
  20. K. H. Drexhage, M. Fleck, H. Kuhn, F. P. Schafer, and W. Sperling, “Beeinflussung Der Fluoreszenz Eines Europiumchelates Durch Einen Spiegel,” Ber. Bunsenges. Phys. Chem 70, 1179 (1966).
  21. R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55(11), 7249–7254 (1997).
    [CrossRef]
  22. L. Novotny, and B. Hecht, Principles of nano-optics (Cambridge University Press, 2006).
  23. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
    [CrossRef]
  24. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
    [CrossRef]
  25. J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129(51), 16249–16256 (2007).
    [CrossRef] [PubMed]
  26. J. Zhao, J. A. Dieringer, X. Y. Zhang, G. C. Schatz, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy,” J. Phys. Chem. C 112(49), 19302–19310 (2008).
    [CrossRef]
  27. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
    [CrossRef]
  28. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  29. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [CrossRef]
  30. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  32. M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19(24), 4159–4174 (1980).
    [CrossRef] [PubMed]
  33. E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
    [CrossRef] [PubMed]
  34. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
    [CrossRef] [PubMed]
  35. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
    [CrossRef] [PubMed]
  36. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
    [CrossRef]
  37. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005). 38.

2010 (4)

L. C. T. Shoute, “Multilayer substrate-mediated tuning resonance of plasmon and SERS EF of nanostructured silver,” ChemPhysChem 11(12), 2539–2545 (2010).
[CrossRef] [PubMed]

L. P. Du, X. J. Zhang, T. Mei, and X. C. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[CrossRef]

2009 (3)

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
[CrossRef] [PubMed]

L. C. T. Shoute, A. J. Bergren, A. M. Mahmoud, K. D. Harris, and R. L. McCreery, “Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 63(2), 133–140 (2009).
[CrossRef] [PubMed]

H. C. Kim and X. Cheng, “SERS-active substrate based on gap surface plasmon polaritons,” Opt. Express 17(20), 17234–17241 (2009).
[CrossRef] [PubMed]

2008 (4)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
[CrossRef] [PubMed]

J. Zhao, J. A. Dieringer, X. Y. Zhang, G. C. Schatz, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy,” J. Phys. Chem. C 112(49), 19302–19310 (2008).
[CrossRef]

2007 (1)

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129(51), 16249–16256 (2007).
[CrossRef] [PubMed]

2006 (1)

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

2005 (5)

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef]

X. Y. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

L. D. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309(5731), 113–115 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

2003 (2)

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods 53(2), 221–233 (2003).
[CrossRef] [PubMed]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

2001 (2)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[CrossRef]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

1999 (1)

J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, “Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids,” Anal. Chem. 71(21), 4903–4908 (1999).
[CrossRef] [PubMed]

1997 (3)

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55(11), 7249–7254 (1997).
[CrossRef]

1985 (1)

M. Moskovits, “Surface-Enhanced Spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

1980 (1)

M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19(24), 4159–4174 (1980).
[CrossRef] [PubMed]

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[CrossRef]

1966 (1)

K. H. Drexhage, M. Fleck, H. Kuhn, F. P. Schafer, and W. Sperling, “Beeinflussung Der Fluoreszenz Eines Europiumchelates Durch Einen Spiegel,” Ber. Bunsenges. Phys. Chem 70, 1179 (1966).

Amos, R. M.

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55(11), 7249–7254 (1997).
[CrossRef]

Andreani, L. C.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
[CrossRef] [PubMed]

Barnes, W. L.

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55(11), 7249–7254 (1997).
[CrossRef]

Bergren, A. J.

L. C. T. Shoute, A. J. Bergren, A. M. Mahmoud, K. D. Harris, and R. L. McCreery, “Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 63(2), 133–140 (2009).
[CrossRef] [PubMed]

Businaro, L.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
[CrossRef] [PubMed]

Cao, Y. W.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[CrossRef]

Cheng, X.

H. C. Kim and X. Cheng, “SERS-active substrate based on gap surface plasmon polaritons,” Opt. Express 17(20), 17234–17241 (2009).
[CrossRef] [PubMed]

Chew, H.

M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19(24), 4159–4174 (1980).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Claycomb, J. L.

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods 53(2), 221–233 (2003).
[CrossRef] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Das, G.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
[CrossRef] [PubMed]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Dawson, G. B.

J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, “Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids,” Anal. Chem. 71(21), 4903–4908 (1999).
[CrossRef] [PubMed]

De Angelis, F.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
[CrossRef] [PubMed]

Di Fabrizio, E.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
[CrossRef] [PubMed]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

J. Zhao, J. A. Dieringer, X. Y. Zhang, G. C. Schatz, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy,” J. Phys. Chem. C 112(49), 19302–19310 (2008).
[CrossRef]

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129(51), 16249–16256 (2007).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef]

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[CrossRef]

K. H. Drexhage, M. Fleck, H. Kuhn, F. P. Schafer, and W. Sperling, “Beeinflussung Der Fluoreszenz Eines Europiumchelates Durch Einen Spiegel,” Ber. Bunsenges. Phys. Chem 70, 1179 (1966).

Du, L. P.

L. P. Du, X. J. Zhang, T. Mei, and X. C. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
[CrossRef] [PubMed]

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

Emory, S. R.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Fleck, M.

K. H. Drexhage, M. Fleck, H. Kuhn, F. P. Schafer, and W. Sperling, “Beeinflussung Der Fluoreszenz Eines Europiumchelates Durch Einen Spiegel,” Ber. Bunsenges. Phys. Chem 70, 1179 (1966).

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Galli, M.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
[CrossRef] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Gray, S. K.

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
[CrossRef] [PubMed]

Grow, A. E.

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods 53(2), 221–233 (2003).
[CrossRef] [PubMed]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Harris, K. D.

L. C. T. Shoute, A. J. Bergren, A. M. Mahmoud, K. D. Harris, and R. L. McCreery, “Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 63(2), 133–140 (2009).
[CrossRef] [PubMed]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[CrossRef]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Huang, L.

L. D. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309(5731), 113–115 (2005).
[CrossRef] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Imre, A.

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Jin, R. C.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[CrossRef]

Kelly, K. L.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

Kerker, M.

M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19(24), 4159–4174 (1980).
[CrossRef] [PubMed]

Kim, H. C.

H. C. Kim and X. Cheng, “SERS-active substrate based on gap surface plasmon polaritons,” Opt. Express 17(20), 17234–17241 (2009).
[CrossRef] [PubMed]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Kuhn, H.

K. H. Drexhage, M. Fleck, H. Kuhn, F. P. Schafer, and W. Sperling, “Beeinflussung Der Fluoreszenz Eines Europiumchelates Durch Einen Spiegel,” Ber. Bunsenges. Phys. Chem 70, 1179 (1966).

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Le Ru, E. C.

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

Lettan, R. B.

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129(51), 16249–16256 (2007).
[CrossRef] [PubMed]

Lipert, R. J.

J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, “Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids,” Anal. Chem. 71(21), 4903–4908 (1999).
[CrossRef] [PubMed]

Lyandres, O.

X. Y. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

Mahmoud, A. M.

L. C. T. Shoute, A. J. Bergren, A. M. Mahmoud, K. D. Harris, and R. L. McCreery, “Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 63(2), 133–140 (2009).
[CrossRef] [PubMed]

Maksymov, I.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
[CrossRef] [PubMed]

McCreery, R. L.

L. C. T. Shoute, A. J. Bergren, A. M. Mahmoud, K. D. Harris, and R. L. McCreery, “Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 63(2), 133–140 (2009).
[CrossRef] [PubMed]

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Mei, T.

L. P. Du, X. J. Zhang, T. Mei, and X. C. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
[CrossRef] [PubMed]

Meyer, M.

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

Mirkin, C. A.

L. D. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309(5731), 113–115 (2005).
[CrossRef] [PubMed]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Montgomery, J. M.

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, “Surface-Enhanced Spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Ni, J.

J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, “Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids,” Anal. Chem. 71(21), 4903–4908 (1999).
[CrossRef] [PubMed]

Nie, S. M.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Park, S.

L. D. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309(5731), 113–115 (2005).
[CrossRef] [PubMed]

Patrini, M.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Porter, M. D.

J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, “Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids,” Anal. Chem. 71(21), 4903–4908 (1999).
[CrossRef] [PubMed]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[CrossRef]

Qin, L. D.

L. D. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309(5731), 113–115 (2005).
[CrossRef] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Schafer, F. P.

K. H. Drexhage, M. Fleck, H. Kuhn, F. P. Schafer, and W. Sperling, “Beeinflussung Der Fluoreszenz Eines Europiumchelates Durch Einen Spiegel,” Ber. Bunsenges. Phys. Chem 70, 1179 (1966).

Schatz, G. C.

J. Zhao, J. A. Dieringer, X. Y. Zhang, G. C. Schatz, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy,” J. Phys. Chem. C 112(49), 19302–19310 (2008).
[CrossRef]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

Scheidt, K. A.

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129(51), 16249–16256 (2007).
[CrossRef] [PubMed]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

Shoute, L. C. T.

L. C. T. Shoute, “Multilayer substrate-mediated tuning resonance of plasmon and SERS EF of nanostructured silver,” ChemPhysChem 11(12), 2539–2545 (2010).
[CrossRef] [PubMed]

L. C. T. Shoute, A. J. Bergren, A. M. Mahmoud, K. D. Harris, and R. L. McCreery, “Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 63(2), 133–140 (2009).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[CrossRef]

Sperling, W.

K. H. Drexhage, M. Fleck, H. Kuhn, F. P. Schafer, and W. Sperling, “Beeinflussung Der Fluoreszenz Eines Europiumchelates Durch Einen Spiegel,” Ber. Bunsenges. Phys. Chem 70, 1179 (1966).

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
[CrossRef] [PubMed]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
[CrossRef] [PubMed]

Thompson, P. A.

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods 53(2), 221–233 (2003).
[CrossRef] [PubMed]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

J. Zhao, J. A. Dieringer, X. Y. Zhang, G. C. Schatz, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy,” J. Phys. Chem. C 112(49), 19302–19310 (2008).
[CrossRef]

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129(51), 16249–16256 (2007).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef]

X. Y. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[CrossRef]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
[CrossRef] [PubMed]

Vlasko-Vlasov, V.

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
[CrossRef] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Wang, D. S.

M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19(24), 4159–4174 (1980).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Welp, U.

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
[CrossRef] [PubMed]

Wood, L. L.

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods 53(2), 221–233 (2003).
[CrossRef] [PubMed]

Young, M. A.

X. Y. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef]

Yuan, X. C.

L. P. Du, X. J. Zhang, T. Mei, and X. C. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
[CrossRef] [PubMed]

Zhang, X. J.

L. P. Du, X. J. Zhang, T. Mei, and X. C. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
[CrossRef] [PubMed]

Zhang, X. Y.

J. Zhao, J. A. Dieringer, X. Y. Zhang, G. C. Schatz, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy,” J. Phys. Chem. C 112(49), 19302–19310 (2008).
[CrossRef]

X. Y. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, J. A. Dieringer, X. Y. Zhang, G. C. Schatz, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy,” J. Phys. Chem. C 112(49), 19302–19310 (2008).
[CrossRef]

Zheng, J. G.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[CrossRef]

Anal. Chem. (1)

J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, “Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids,” Anal. Chem. 71(21), 4903–4908 (1999).
[CrossRef] [PubMed]

Annu Rev Anal Chem (Palo Alto Calif) (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

Appl. Opt. (1)

M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19(24), 4159–4174 (1980).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

L. C. T. Shoute, A. J. Bergren, A. M. Mahmoud, K. D. Harris, and R. L. McCreery, “Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 63(2), 133–140 (2009).
[CrossRef] [PubMed]

Ber. Bunsenges. Phys. Chem (1)

K. H. Drexhage, M. Fleck, H. Kuhn, F. P. Schafer, and W. Sperling, “Beeinflussung Der Fluoreszenz Eines Europiumchelates Durch Einen Spiegel,” Ber. Bunsenges. Phys. Chem 70, 1179 (1966).

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

ChemPhysChem (1)

L. C. T. Shoute, “Multilayer substrate-mediated tuning resonance of plasmon and SERS EF of nanostructured silver,” ChemPhysChem 11(12), 2539–2545 (2010).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (2)

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129(51), 16249–16256 (2007).
[CrossRef] [PubMed]

X. Y. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

J. Lumin. (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[CrossRef]

J. Microbiol. Methods (1)

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods 53(2), 221–233 (2003).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

J. Zhao, J. A. Dieringer, X. Y. Zhang, G. C. Schatz, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy,” J. Phys. Chem. C 112(49), 19302–19310 (2008).
[CrossRef]

Nano Lett. (2)

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[CrossRef]

Opt. Express (4)

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
[CrossRef] [PubMed]

H. C. Kim and X. Cheng, “SERS-active substrate based on gap surface plasmon polaritons,” Opt. Express 17(20), 17234–17241 (2009).
[CrossRef] [PubMed]

L. P. Du, X. J. Zhang, T. Mei, and X. C. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
[CrossRef] [PubMed]

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55(11), 7249–7254 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-Enhanced Spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Science (4)

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

L. D. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309(5731), 113–115 (2005).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005). 38.

L. Novotny, and B. Hecht, Principles of nano-optics (Cambridge University Press, 2006).

M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Silver nano-prisms over the multilayer SERS substrate. (a) Schematic of silver nano-prisms on TiO2 spacer layer over optically thick Au layer, where t is the thickness of TiO2 and d is the side length of a nano-prism. The illumination pattern is not to scale and the actual experiment has ~30 MNPs within the focus. (b) The SEM of the multilayer SERS substrate surface. The inset shows a TEM image of a single silver nano-prism.

Fig. 2
Fig. 2

Extinction spectrum of the silver nano-prisms used in the experiment in an aqueous environment, where the 673 nm extinction peak is clearly visible.

Fig. 3
Fig. 3

Experimental SERS spectra. (a) An example Raman spectra for the R6G dye using the silver nano-prisms. (b) Enhancement of SERS using silver nano-prisms for the 1509 cm−1 Stokes shift peak as a function of dielectric layer thickness, normalized by the SERS signal from a bare glass substrate. The blue bands indicate the first order and the second order SERS enhancement peaks.

Fig. 4
Fig. 4

Finite difference time domain simulations of enhancement factor, for 80 nm side nano-prism in the same configuration as in Fig. 3(b).

Fig. 5
Fig. 5

Simulated local electric field intensity distributions close to a nano-prism for varying dielectric thicknesses (t = 80 nm, 160 nm, 260 nm) shown on a logarithmic scale. The dashed lines show the interfaces of the silver nano-prism, the dielectric layer and the gold ground plane.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( 2 × d ) n d = ( m + 1 2 ) λ
I s e r s E ex 2 × E R a m a n 2

Metrics