Abstract

We observe ultraviolet photoluminescence from sputtered ZnO quantum dots which are fabricated with no annealing steps. The nanocrystals are embedded in amorphous SiO2 and exhibit a narrow size distribution of 3.5 ± 0.6 nm. Photoluminescence and transmittance measurements show a shift of ultraviolet emission and absorption of the dots compared to bulk ZnO material. This work paves the way for cheap nanooptical devices in the ultraviolet which are fabricated in a single sputtering run.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Janßen, K. M. Whitaker, D. R. Gamelin, and R. Bratschitsch, “Ultrafast spin dynamics in colloidal ZnO quantum dots,” Nano Lett. 8, 1991–1994 (2008).
    [CrossRef]
  2. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
    [CrossRef]
  3. T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
    [CrossRef] [PubMed]
  4. J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
    [CrossRef]
  5. G. Mayer, M. Fonin, U. R¨udiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology 20, 075601 (2009).
    [CrossRef] [PubMed]
  6. V. Pankratov, V. Osinniy, A. Nylandsted Larsen, and B. Bech Nielsen, “ZnO nanocrystals/SiO2 multilayer structures fabricated by rf-magnetron sputtering,” Physica B 404, 4827–4830 (2009).
    [CrossRef]
  7. J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall Inc., 1971).
  8. S. Srinivasan, F. Bertram, A. Bell, F. A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, “Low Stokes shift in thick and homogeneous InGaN epilayers,” Appl. Phys. Lett. 80, 550–552 (2002).
    [CrossRef]
  9. P.-T. Hsieh, Y.-C. Chen, C.-M. Wang, Y.-Z. Tsai, and C.-C. Hu, “Structural and photoluminescence characteristics of ZnO films by room temperature sputtering and rapid thermal annealing process,” Appl. Phys., A Mater. Sci. Process. 84, 345–349 (2006).
    [CrossRef]
  10. Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys. 94, 354–358 (2003).
    [CrossRef]
  11. J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang, and M. Wang, “High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn,” Appl. Surf. Sci. 229, 311–315 (2004).
    [CrossRef]
  12. Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys. 84, 3912–3918 (1998).
    [CrossRef]
  13. V. A. Fonoberov, K. A. Alim, and A. A. Balandin, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B 73, 165317 (2006).
    [CrossRef]
  14. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79, 7983–7990 (1996).
    [CrossRef]
  15. M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Status Solidi 3, 88–90 (2009) (RRL).
    [CrossRef]
  16. J. G. Lu, Z. Z. Ye, Y. Z. Zhang, Q. L. Liang, S. Fujita, and Z. L. Wang, “Self-assembled ZnO quantum dots with tunable optical properties,” Appl. Phys. Lett. 89, 023122 (2006).
    [CrossRef]
  17. L. Mädler, J. W. Stark, and S. E. Pratsinis, “Rapid synthesis of stable ZnO quantum dots,” J. Appl. Phys. 92, 6537–6540 (2002).
    [CrossRef]
  18. K. Suzuki, H. Kondo, M. Inoguchi, N. Tanaka, K. Kageyama, and H. Takagi, “Optical properties of wellcrystallized and size-tuned ZnO quantum dots,” Appl. Phys. Lett. 94, 223103 (2009).
    [CrossRef]
  19. R. T. Senger and K. K. Bajaj, “Optical properties of confined polaronic excitons in spherical ionic quantum dots,” Phys. Rev. B 68, 045313 (2003).
    [CrossRef]
  20. L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80, 4403–4409 (1984).
    [CrossRef]
  21. M. Iwamatsu, M. Fujiwara, N. Happo, and K. Horii, “Effects of dielectric discontinuity on the ground-state energy of charged Si dots covered with a SiO2 layer,” J. Phys. Condens. Matter 9, 9881–9892 (1997).
    [CrossRef]
  22. V. A. Fonoberov and A. A. Balandin, “Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes,” Appl. Phys. Lett. 85, 5971–5973 (2004).
    [CrossRef]
  23. V. A. Fonoberov, and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: the dead-layer effect,” Phys. Rev. B 70, 195410 (2004).
  24. K. A. Alim, V. A. Fonoberov, and A. A. Balandin, “Origin of the optical phonon frequency shifts in ZnO quantum dots,” Appl. Phys. Lett. 86, 053103 (2005).
    [CrossRef]
  25. Y. Yamada, Wide Bandgap Semiconductors, 1st ed. (Springer, Berlin, 2007).

2009

G. Mayer, M. Fonin, U. R¨udiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology 20, 075601 (2009).
[CrossRef] [PubMed]

V. Pankratov, V. Osinniy, A. Nylandsted Larsen, and B. Bech Nielsen, “ZnO nanocrystals/SiO2 multilayer structures fabricated by rf-magnetron sputtering,” Physica B 404, 4827–4830 (2009).
[CrossRef]

M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Status Solidi 3, 88–90 (2009) (RRL).
[CrossRef]

K. Suzuki, H. Kondo, M. Inoguchi, N. Tanaka, K. Kageyama, and H. Takagi, “Optical properties of wellcrystallized and size-tuned ZnO quantum dots,” Appl. Phys. Lett. 94, 223103 (2009).
[CrossRef]

2008

N. Janßen, K. M. Whitaker, D. R. Gamelin, and R. Bratschitsch, “Ultrafast spin dynamics in colloidal ZnO quantum dots,” Nano Lett. 8, 1991–1994 (2008).
[CrossRef]

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

2006

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef]

P.-T. Hsieh, Y.-C. Chen, C.-M. Wang, Y.-Z. Tsai, and C.-C. Hu, “Structural and photoluminescence characteristics of ZnO films by room temperature sputtering and rapid thermal annealing process,” Appl. Phys., A Mater. Sci. Process. 84, 345–349 (2006).
[CrossRef]

J. G. Lu, Z. Z. Ye, Y. Z. Zhang, Q. L. Liang, S. Fujita, and Z. L. Wang, “Self-assembled ZnO quantum dots with tunable optical properties,” Appl. Phys. Lett. 89, 023122 (2006).
[CrossRef]

V. A. Fonoberov, K. A. Alim, and A. A. Balandin, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B 73, 165317 (2006).
[CrossRef]

2005

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

K. A. Alim, V. A. Fonoberov, and A. A. Balandin, “Origin of the optical phonon frequency shifts in ZnO quantum dots,” Appl. Phys. Lett. 86, 053103 (2005).
[CrossRef]

2004

V. A. Fonoberov and A. A. Balandin, “Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes,” Appl. Phys. Lett. 85, 5971–5973 (2004).
[CrossRef]

V. A. Fonoberov, and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: the dead-layer effect,” Phys. Rev. B 70, 195410 (2004).

J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang, and M. Wang, “High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn,” Appl. Surf. Sci. 229, 311–315 (2004).
[CrossRef]

2003

R. T. Senger and K. K. Bajaj, “Optical properties of confined polaronic excitons in spherical ionic quantum dots,” Phys. Rev. B 68, 045313 (2003).
[CrossRef]

Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys. 94, 354–358 (2003).
[CrossRef]

2002

S. Srinivasan, F. Bertram, A. Bell, F. A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, “Low Stokes shift in thick and homogeneous InGaN epilayers,” Appl. Phys. Lett. 80, 550–552 (2002).
[CrossRef]

L. Mädler, J. W. Stark, and S. E. Pratsinis, “Rapid synthesis of stable ZnO quantum dots,” J. Appl. Phys. 92, 6537–6540 (2002).
[CrossRef]

1998

Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys. 84, 3912–3918 (1998).
[CrossRef]

1997

M. Iwamatsu, M. Fujiwara, N. Happo, and K. Horii, “Effects of dielectric discontinuity on the ground-state energy of charged Si dots covered with a SiO2 layer,” J. Phys. Condens. Matter 9, 9881–9892 (1997).
[CrossRef]

1996

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79, 7983–7990 (1996).
[CrossRef]

1984

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80, 4403–4409 (1984).
[CrossRef]

Alim, K. A.

V. A. Fonoberov, K. A. Alim, and A. A. Balandin, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B 73, 165317 (2006).
[CrossRef]

K. A. Alim, V. A. Fonoberov, and A. A. Balandin, “Origin of the optical phonon frequency shifts in ZnO quantum dots,” Appl. Phys. Lett. 86, 053103 (2005).
[CrossRef]

Arakawa, Y.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef]

Bagnall, D. M.

Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys. 84, 3912–3918 (1998).
[CrossRef]

Bajaj, K. K.

R. T. Senger and K. K. Bajaj, “Optical properties of confined polaronic excitons in spherical ionic quantum dots,” Phys. Rev. B 68, 045313 (2003).
[CrossRef]

Balandin, A. A.

V. A. Fonoberov, K. A. Alim, and A. A. Balandin, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B 73, 165317 (2006).
[CrossRef]

K. A. Alim, V. A. Fonoberov, and A. A. Balandin, “Origin of the optical phonon frequency shifts in ZnO quantum dots,” Appl. Phys. Lett. 86, 053103 (2005).
[CrossRef]

V. A. Fonoberov and A. A. Balandin, “Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes,” Appl. Phys. Lett. 85, 5971–5973 (2004).
[CrossRef]

V. A. Fonoberov, and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: the dead-layer effect,” Phys. Rev. B 70, 195410 (2004).

Bech Nielsen, B.

V. Pankratov, V. Osinniy, A. Nylandsted Larsen, and B. Bech Nielsen, “ZnO nanocrystals/SiO2 multilayer structures fabricated by rf-magnetron sputtering,” Physica B 404, 4827–4830 (2009).
[CrossRef]

Beha, K.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

Bell, A.

S. Srinivasan, F. Bertram, A. Bell, F. A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, “Low Stokes shift in thick and homogeneous InGaN epilayers,” Appl. Phys. Lett. 80, 550–552 (2002).
[CrossRef]

Bertram, F.

S. Srinivasan, F. Bertram, A. Bell, F. A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, “Low Stokes shift in thick and homogeneous InGaN epilayers,” Appl. Phys. Lett. 80, 550–552 (2002).
[CrossRef]

Bratschitsch, R.

G. Mayer, M. Fonin, U. R¨udiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology 20, 075601 (2009).
[CrossRef] [PubMed]

N. Janßen, K. M. Whitaker, D. R. Gamelin, and R. Bratschitsch, “Ultrafast spin dynamics in colloidal ZnO quantum dots,” Nano Lett. 8, 1991–1994 (2008).
[CrossRef]

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

Brus, L. E.

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80, 4403–4409 (1984).
[CrossRef]

Chen, M. J.

M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Status Solidi 3, 88–90 (2009) (RRL).
[CrossRef]

Chen, Y.

Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys. 84, 3912–3918 (1998).
[CrossRef]

Chen, Y.-C.

P.-T. Hsieh, Y.-C. Chen, C.-M. Wang, Y.-Z. Tsai, and C.-C. Hu, “Structural and photoluminescence characteristics of ZnO films by room temperature sputtering and rapid thermal annealing process,” Appl. Phys., A Mater. Sci. Process. 84, 345–349 (2006).
[CrossRef]

Fan, X. W.

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

Fonin, M.

G. Mayer, M. Fonin, U. R¨udiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology 20, 075601 (2009).
[CrossRef] [PubMed]

Fonoberov, V. A.

V. A. Fonoberov, K. A. Alim, and A. A. Balandin, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B 73, 165317 (2006).
[CrossRef]

K. A. Alim, V. A. Fonoberov, and A. A. Balandin, “Origin of the optical phonon frequency shifts in ZnO quantum dots,” Appl. Phys. Lett. 86, 053103 (2005).
[CrossRef]

V. A. Fonoberov and A. A. Balandin, “Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes,” Appl. Phys. Lett. 85, 5971–5973 (2004).
[CrossRef]

V. A. Fonoberov, and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: the dead-layer effect,” Phys. Rev. B 70, 195410 (2004).

Fujita, S.

J. G. Lu, Z. Z. Ye, Y. Z. Zhang, Q. L. Liang, S. Fujita, and Z. L. Wang, “Self-assembled ZnO quantum dots with tunable optical properties,” Appl. Phys. Lett. 89, 023122 (2006).
[CrossRef]

Fujiwara, M.

M. Iwamatsu, M. Fujiwara, N. Happo, and K. Horii, “Effects of dielectric discontinuity on the ground-state energy of charged Si dots covered with a SiO2 layer,” J. Phys. Condens. Matter 9, 9881–9892 (1997).
[CrossRef]

Gamelin, D. R.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

N. Janßen, K. M. Whitaker, D. R. Gamelin, and R. Bratschitsch, “Ultrafast spin dynamics in colloidal ZnO quantum dots,” Nano Lett. 8, 1991–1994 (2008).
[CrossRef]

Gerthsen, D.

G. Mayer, M. Fonin, U. R¨udiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology 20, 075601 (2009).
[CrossRef] [PubMed]

Gnade, B. E.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79, 7983–7990 (1996).
[CrossRef]

Götzinger, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef]

Hanke, T.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

Happo, N.

M. Iwamatsu, M. Fujiwara, N. Happo, and K. Horii, “Effects of dielectric discontinuity on the ground-state energy of charged Si dots covered with a SiO2 layer,” J. Phys. Condens. Matter 9, 9881–9892 (1997).
[CrossRef]

Hiraga, K.

Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys. 84, 3912–3918 (1998).
[CrossRef]

Hng, H. H.

Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys. 94, 354–358 (2003).
[CrossRef]

Horii, K.

M. Iwamatsu, M. Fujiwara, N. Happo, and K. Horii, “Effects of dielectric discontinuity on the ground-state energy of charged Si dots covered with a SiO2 layer,” J. Phys. Condens. Matter 9, 9881–9892 (1997).
[CrossRef]

Hoshino, K.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef]

Hsieh, P.-T.

P.-T. Hsieh, Y.-C. Chen, C.-M. Wang, Y.-Z. Tsai, and C.-C. Hu, “Structural and photoluminescence characteristics of ZnO films by room temperature sputtering and rapid thermal annealing process,” Appl. Phys., A Mater. Sci. Process. 84, 345–349 (2006).
[CrossRef]

Hu, C.-C.

P.-T. Hsieh, Y.-C. Chen, C.-M. Wang, Y.-Z. Tsai, and C.-C. Hu, “Structural and photoluminescence characteristics of ZnO films by room temperature sputtering and rapid thermal annealing process,” Appl. Phys., A Mater. Sci. Process. 84, 345–349 (2006).
[CrossRef]

Hu, L.

J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang, and M. Wang, “High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn,” Appl. Surf. Sci. 229, 311–315 (2004).
[CrossRef]

Inoguchi, M.

K. Suzuki, H. Kondo, M. Inoguchi, N. Tanaka, K. Kageyama, and H. Takagi, “Optical properties of wellcrystallized and size-tuned ZnO quantum dots,” Appl. Phys. Lett. 94, 223103 (2009).
[CrossRef]

Iwamatsu, M.

M. Iwamatsu, M. Fujiwara, N. Happo, and K. Horii, “Effects of dielectric discontinuity on the ground-state energy of charged Si dots covered with a SiO2 layer,” J. Phys. Condens. Matter 9, 9881–9892 (1997).
[CrossRef]

Janßen, N.

G. Mayer, M. Fonin, U. R¨udiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology 20, 075601 (2009).
[CrossRef] [PubMed]

N. Janßen, K. M. Whitaker, D. R. Gamelin, and R. Bratschitsch, “Ultrafast spin dynamics in colloidal ZnO quantum dots,” Nano Lett. 8, 1991–1994 (2008).
[CrossRef]

Kageyama, K.

K. Suzuki, H. Kondo, M. Inoguchi, N. Tanaka, K. Kageyama, and H. Takagi, “Optical properties of wellcrystallized and size-tuned ZnO quantum dots,” Appl. Phys. Lett. 94, 223103 (2009).
[CrossRef]

Kahl, M.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

Kako, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef]

Knittel, V.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

Koh, H.-J.

Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys. 84, 3912–3918 (1998).
[CrossRef]

Kondo, H.

K. Suzuki, H. Kondo, M. Inoguchi, N. Tanaka, K. Kageyama, and H. Takagi, “Optical properties of wellcrystallized and size-tuned ZnO quantum dots,” Appl. Phys. Lett. 94, 223103 (2009).
[CrossRef]

Lau, S. P.

Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys. 94, 354–358 (2003).
[CrossRef]

Lee, H. W.

Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys. 94, 354–358 (2003).
[CrossRef]

Leitenstorfer, A.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

Liang, Q. L.

J. G. Lu, Z. Z. Ye, Y. Z. Zhang, Q. L. Liang, S. Fujita, and Z. L. Wang, “Self-assembled ZnO quantum dots with tunable optical properties,” Appl. Phys. Lett. 89, 023122 (2006).
[CrossRef]

Liang, X.

J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang, and M. Wang, “High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn,” Appl. Surf. Sci. 229, 311–315 (2004).
[CrossRef]

Liu, Y. C.

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

Liu, Y. X.

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

Lu, J. G.

J. G. Lu, Z. Z. Ye, Y. Z. Zhang, Q. L. Liang, S. Fujita, and Z. L. Wang, “Self-assembled ZnO quantum dots with tunable optical properties,” Appl. Phys. Lett. 89, 023122 (2006).
[CrossRef]

Lu, Y. M.

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

Ma, J. G.

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

Mädler, L.

L. Mädler, J. W. Stark, and S. E. Pratsinis, “Rapid synthesis of stable ZnO quantum dots,” J. Appl. Phys. 92, 6537–6540 (2002).
[CrossRef]

Mayer, G.

G. Mayer, M. Fonin, U. R¨udiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology 20, 075601 (2009).
[CrossRef] [PubMed]

Nakagawa, Y.

S. Srinivasan, F. Bertram, A. Bell, F. A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, “Low Stokes shift in thick and homogeneous InGaN epilayers,” Appl. Phys. Lett. 80, 550–552 (2002).
[CrossRef]

Nylandsted Larsen, A.

V. Pankratov, V. Osinniy, A. Nylandsted Larsen, and B. Bech Nielsen, “ZnO nanocrystals/SiO2 multilayer structures fabricated by rf-magnetron sputtering,” Physica B 404, 4827–4830 (2009).
[CrossRef]

Omiya, H.

S. Srinivasan, F. Bertram, A. Bell, F. A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, “Low Stokes shift in thick and homogeneous InGaN epilayers,” Appl. Phys. Lett. 80, 550–552 (2002).
[CrossRef]

Osinniy, V.

V. Pankratov, V. Osinniy, A. Nylandsted Larsen, and B. Bech Nielsen, “ZnO nanocrystals/SiO2 multilayer structures fabricated by rf-magnetron sputtering,” Physica B 404, 4827–4830 (2009).
[CrossRef]

Pankratov, V.

V. Pankratov, V. Osinniy, A. Nylandsted Larsen, and B. Bech Nielsen, “ZnO nanocrystals/SiO2 multilayer structures fabricated by rf-magnetron sputtering,” Physica B 404, 4827–4830 (2009).
[CrossRef]

Park, K.-T.

Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys. 84, 3912–3918 (1998).
[CrossRef]

Ponce, F. A.

S. Srinivasan, F. Bertram, A. Bell, F. A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, “Low Stokes shift in thick and homogeneous InGaN epilayers,” Appl. Phys. Lett. 80, 550–552 (2002).
[CrossRef]

Pratsinis, S. E.

L. Mädler, J. W. Stark, and S. E. Pratsinis, “Rapid synthesis of stable ZnO quantum dots,” J. Appl. Phys. 92, 6537–6540 (2002).
[CrossRef]

R¨udiger, U.

G. Mayer, M. Fonin, U. R¨udiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology 20, 075601 (2009).
[CrossRef] [PubMed]

Santori, C.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef]

Schneider, R.

G. Mayer, M. Fonin, U. R¨udiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology 20, 075601 (2009).
[CrossRef] [PubMed]

Seager, C. H.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79, 7983–7990 (1996).
[CrossRef]

Senger, R. T.

R. T. Senger and K. K. Bajaj, “Optical properties of confined polaronic excitons in spherical ionic quantum dots,” Phys. Rev. B 68, 045313 (2003).
[CrossRef]

Shao, C. L.

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

Shen, D. Z.

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

Shih, Y. T.

M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Status Solidi 3, 88–90 (2009) (RRL).
[CrossRef]

Shiojiri, M.

M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Status Solidi 3, 88–90 (2009) (RRL).
[CrossRef]

Sotier, F.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

Srinivasan, S.

S. Srinivasan, F. Bertram, A. Bell, F. A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, “Low Stokes shift in thick and homogeneous InGaN epilayers,” Appl. Phys. Lett. 80, 550–552 (2002).
[CrossRef]

Stark, J. W.

L. Mädler, J. W. Stark, and S. E. Pratsinis, “Rapid synthesis of stable ZnO quantum dots,” J. Appl. Phys. 92, 6537–6540 (2002).
[CrossRef]

Suzuki, K.

K. Suzuki, H. Kondo, M. Inoguchi, N. Tanaka, K. Kageyama, and H. Takagi, “Optical properties of wellcrystallized and size-tuned ZnO quantum dots,” Appl. Phys. Lett. 94, 223103 (2009).
[CrossRef]

Takagi, H.

K. Suzuki, H. Kondo, M. Inoguchi, N. Tanaka, K. Kageyama, and H. Takagi, “Optical properties of wellcrystallized and size-tuned ZnO quantum dots,” Appl. Phys. Lett. 94, 223103 (2009).
[CrossRef]

Tallant, D. R.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79, 7983–7990 (1996).
[CrossRef]

Tanaka, N.

K. Suzuki, H. Kondo, M. Inoguchi, N. Tanaka, K. Kageyama, and H. Takagi, “Optical properties of wellcrystallized and size-tuned ZnO quantum dots,” Appl. Phys. Lett. 94, 223103 (2009).
[CrossRef]

Tanaka, S.

S. Srinivasan, F. Bertram, A. Bell, F. A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, “Low Stokes shift in thick and homogeneous InGaN epilayers,” Appl. Phys. Lett. 80, 550–552 (2002).
[CrossRef]

Tay, B. K.

Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys. 94, 354–358 (2003).
[CrossRef]

Thomay, T.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

Tomas, M.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

Tsai, Y.-Z.

P.-T. Hsieh, Y.-C. Chen, C.-M. Wang, Y.-Z. Tsai, and C.-C. Hu, “Structural and photoluminescence characteristics of ZnO films by room temperature sputtering and rapid thermal annealing process,” Appl. Phys., A Mater. Sci. Process. 84, 345–349 (2006).
[CrossRef]

Vanheusden, K.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79, 7983–7990 (1996).
[CrossRef]

Voigt, J. A.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79, 7983–7990 (1996).
[CrossRef]

Wang, C.-M.

P.-T. Hsieh, Y.-C. Chen, C.-M. Wang, Y.-Z. Tsai, and C.-C. Hu, “Structural and photoluminescence characteristics of ZnO films by room temperature sputtering and rapid thermal annealing process,” Appl. Phys., A Mater. Sci. Process. 84, 345–349 (2006).
[CrossRef]

Wang, M.

J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang, and M. Wang, “High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn,” Appl. Surf. Sci. 229, 311–315 (2004).
[CrossRef]

Wang, Y. G.

Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys. 94, 354–358 (2003).
[CrossRef]

Wang, Z.

J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang, and M. Wang, “High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn,” Appl. Surf. Sci. 229, 311–315 (2004).
[CrossRef]

Wang, Z. L.

J. G. Lu, Z. Z. Ye, Y. Z. Zhang, Q. L. Liang, S. Fujita, and Z. L. Wang, “Self-assembled ZnO quantum dots with tunable optical properties,” Appl. Phys. Lett. 89, 023122 (2006).
[CrossRef]

Warren, W. L.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79, 7983–7990 (1996).
[CrossRef]

Whitaker, K. M.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

N. Janßen, K. M. Whitaker, D. R. Gamelin, and R. Bratschitsch, “Ultrafast spin dynamics in colloidal ZnO quantum dots,” Nano Lett. 8, 1991–1994 (2008).
[CrossRef]

Wu, M. K.

M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Status Solidi 3, 88–90 (2009) (RRL).
[CrossRef]

Xu, C. S.

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

Xu, H. Y.

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

Yamamoto, Y.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef]

Yang, J. R.

M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Status Solidi 3, 88–90 (2009) (RRL).
[CrossRef]

Yao, T.

Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys. 84, 3912–3918 (1998).
[CrossRef]

Ye, Z. Z.

J. G. Lu, Z. Z. Ye, Y. Z. Zhang, Q. L. Liang, S. Fujita, and Z. L. Wang, “Self-assembled ZnO quantum dots with tunable optical properties,” Appl. Phys. Lett. 89, 023122 (2006).
[CrossRef]

Yu, S. F.

Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys. 94, 354–358 (2003).
[CrossRef]

Zhang, J. Y.

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

Zhang, X. H.

Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys. 94, 354–358 (2003).
[CrossRef]

Zhang, Y. Z.

J. G. Lu, Z. Z. Ye, Y. Z. Zhang, Q. L. Liang, S. Fujita, and Z. L. Wang, “Self-assembled ZnO quantum dots with tunable optical properties,” Appl. Phys. Lett. 89, 023122 (2006).
[CrossRef]

Zhao, J.

J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang, and M. Wang, “High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn,” Appl. Surf. Sci. 229, 311–315 (2004).
[CrossRef]

Zhao, Y.

J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang, and M. Wang, “High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn,” Appl. Surf. Sci. 229, 311–315 (2004).
[CrossRef]

Zhu, Z.

Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys. 84, 3912–3918 (1998).
[CrossRef]

Appl. Phys. Lett.

S. Srinivasan, F. Bertram, A. Bell, F. A. Ponce, S. Tanaka, H. Omiya, and Y. Nakagawa, “Low Stokes shift in thick and homogeneous InGaN epilayers,” Appl. Phys. Lett. 80, 550–552 (2002).
[CrossRef]

J. G. Lu, Z. Z. Ye, Y. Z. Zhang, Q. L. Liang, S. Fujita, and Z. L. Wang, “Self-assembled ZnO quantum dots with tunable optical properties,” Appl. Phys. Lett. 89, 023122 (2006).
[CrossRef]

K. Suzuki, H. Kondo, M. Inoguchi, N. Tanaka, K. Kageyama, and H. Takagi, “Optical properties of wellcrystallized and size-tuned ZnO quantum dots,” Appl. Phys. Lett. 94, 223103 (2009).
[CrossRef]

V. A. Fonoberov and A. A. Balandin, “Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes,” Appl. Phys. Lett. 85, 5971–5973 (2004).
[CrossRef]

K. A. Alim, V. A. Fonoberov, and A. A. Balandin, “Origin of the optical phonon frequency shifts in ZnO quantum dots,” Appl. Phys. Lett. 86, 053103 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

P.-T. Hsieh, Y.-C. Chen, C.-M. Wang, Y.-Z. Tsai, and C.-C. Hu, “Structural and photoluminescence characteristics of ZnO films by room temperature sputtering and rapid thermal annealing process,” Appl. Phys., A Mater. Sci. Process. 84, 345–349 (2006).
[CrossRef]

Appl. Surf. Sci.

J. Zhao, L. Hu, Z. Wang, Y. Zhao, X. Liang, and M. Wang, “High-quality ZnO thin films prepared by low temperature oxidation of metallic Zn,” Appl. Surf. Sci. 229, 311–315 (2004).
[CrossRef]

J. Appl. Phys.

Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys. 84, 3912–3918 (1998).
[CrossRef]

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79, 7983–7990 (1996).
[CrossRef]

L. Mädler, J. W. Stark, and S. E. Pratsinis, “Rapid synthesis of stable ZnO quantum dots,” J. Appl. Phys. 92, 6537–6540 (2002).
[CrossRef]

Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys. 94, 354–358 (2003).
[CrossRef]

J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys. 97, 103509 (2005).
[CrossRef]

J. Chem. Phys.

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80, 4403–4409 (1984).
[CrossRef]

J. Phys. Condens. Matter

M. Iwamatsu, M. Fujiwara, N. Happo, and K. Horii, “Effects of dielectric discontinuity on the ground-state energy of charged Si dots covered with a SiO2 layer,” J. Phys. Condens. Matter 9, 9881–9892 (1997).
[CrossRef]

Nano Lett.

N. Janßen, K. M. Whitaker, D. R. Gamelin, and R. Bratschitsch, “Ultrafast spin dynamics in colloidal ZnO quantum dots,” Nano Lett. 8, 1991–1994 (2008).
[CrossRef]

Nanotechnology

G. Mayer, M. Fonin, U. R¨udiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering,” Nanotechnology 20, 075601 (2009).
[CrossRef] [PubMed]

Nat. Mater.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef]

Opt. Express

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791–9794 (2008).
[CrossRef] [PubMed]

Phys. Rev. B

R. T. Senger and K. K. Bajaj, “Optical properties of confined polaronic excitons in spherical ionic quantum dots,” Phys. Rev. B 68, 045313 (2003).
[CrossRef]

V. A. Fonoberov, K. A. Alim, and A. A. Balandin, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B 73, 165317 (2006).
[CrossRef]

V. A. Fonoberov, and A. A. Balandin, “Radiative lifetime of excitons in ZnO nanocrystals: the dead-layer effect,” Phys. Rev. B 70, 195410 (2004).

Phys. Status Solidi

M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Status Solidi 3, 88–90 (2009) (RRL).
[CrossRef]

Physica B

V. Pankratov, V. Osinniy, A. Nylandsted Larsen, and B. Bech Nielsen, “ZnO nanocrystals/SiO2 multilayer structures fabricated by rf-magnetron sputtering,” Physica B 404, 4827–4830 (2009).
[CrossRef]

Other

J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall Inc., 1971).

Y. Yamada, Wide Bandgap Semiconductors, 1st ed. (Springer, Berlin, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) (a) Schematic drawing of the sputtered SiO2/ZnO multilayer structure. (b) Corresponding HRTEM side-view image of ZnO quantum dots embedded in SiO2 deposited onto Si(001).

Fig. 2
Fig. 2

(Color online) (a) Schematic drawing of the sputtered SiO2(10 nm)/ZnO(2 nm)/SiO2(5 nm) trilayer structure deposited onto a carbon-coated Cu grid. (b) HRTEM top-view image of a single ZnO quantum dot embedded in amorphous SiO2. (c) Diffractogram corresponding to (b).

Fig. 3
Fig. 3

(Color online) (a) Top-view HRTEM image of a single layer of ZnO quantum dots embedded in amorphous SiO2. (b) histogramm of the size distribution of the sputtered ZnO quantum dots.

Fig. 4
Fig. 4

(Color online) Square of the optical absorption coefficient vs. photon energy of the ZnO quantum dots, demonstrating the onset of absorption above 3.5 eV.

Fig. 5
Fig. 5

(Color online) (a) Room-temperature photoluminescence (PL) spectrum of the ZnO quantum dots showing UV exciton-related as well as visible defect-related emission. (b) Comparison of UV photoluminescence emission of the sputtered ZnO quantum dots with a sputtered and annealed bulk ZnO layer of 330 nm thickness.

Fig. 6
Fig. 6

(Color online) Square of the optical absorption coefficient and UV photoluminescence of ZnO quantum dots, illustrating the Stokes shift.

Metrics