Abstract

Line imaging of fluorescent and absorptive objects with a single-pixel imaging technique that acquires one-dimensional cross-sections through a sample by imposing a spatially-varying amplitude modulation on the probing beam is demonstrated. The fluorophore concentration or absorber distribution of the sample is directly mapped to modulation frequency components of the spatially-integrated temporal signal. Time-domain signals are obtained from a single photodiode, with object spatial frequency correlation encoded in time-domain bursts in the electronic signal from the photodiode.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
    [CrossRef] [PubMed]
  2. W. Gobel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3d laser scanning,” Nat. Methods 4, 73–79 (2007).
    [CrossRef]
  3. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source oct imaging of the anterior segment of human eye at 200 khz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
    [CrossRef] [PubMed]
  4. N. Ji, H. Shroff, H. N. Zhong, and E. Betzig, “Advances in the speed and resolution of light microscopy,” Curr. Opin. Neurobiol. 18, 605–616 (2008).
    [CrossRef]
  5. R. A. Niesner, V. Andresen, and M. Gunzer, “Intravital two-photon microscopy: focus on speed and time resolved imaging modalities,” Immunol. Rev. 221, 7–25 (2008).
    [CrossRef] [PubMed]
  6. C. Nitschke, A. Garin, M. Kosco-Vilbois, and M. Gunzer, “3D and 4D imaging of immune cells in vitro and in vivo,” Histochem. Cell Biol. 130, 1053–1062 (2008).
    [CrossRef] [PubMed]
  7. G. D. Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11, 713–720 (2008).
    [CrossRef]
  8. P. J. Scherz, J. Huisken, P. Sahai-Hernandez, and D. Y. R. Stainier, “High-speed imaging of developing heart valves reveals interplay of morphogenesis and function,” Development 135, 1179–1187 (2008).
    [CrossRef] [PubMed]
  9. G. Stutzmann, “Seeing the brain in action: how multiphoton imaging has advanced our understanding of neuronal function,” Microsc. Microanal. 14, 482–491 (2008).
    [CrossRef] [PubMed]
  10. S. Blonski and T. A. Kowalewski, “Piv analysis of turbulent flow in a micro-channel,” Theor. Appl. Mech. 45, 489–503 (2007).
  11. S. Gekle, J. M. Gordillo, D. van der Meer, and D. Lohse, “High-speed jet formation after solid object impact,” Phys. Rev. Lett. 102, 034502 (2009).
    [CrossRef] [PubMed]
  12. D. Hessman, M. Lexholm, K. A. Dick, S. Ghatnekar-Nilsson, and L. Samuelson, “High-speed nanometer-scale imaging for studies of nanowire mechanics,” Small 3, 1699–1702 (2007).
    [CrossRef] [PubMed]
  13. J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
    [CrossRef] [PubMed]
  14. S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40, 257–285 (2008).
    [CrossRef]
  15. M. El-Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, “Cmos image sensors for high speed applications,” Sensors 9, 430–444 (2009).
    [CrossRef]
  16. J. J. Art and M. B. Goodman, “Rapid-scanning confocal microscopy,” in Methods in Cell Biology, B. Matsumoto, ed. (Academic Press, 1993), Vol 38, pp. 47–77.
    [PubMed]
  17. K. B. Im, S. M. Han, H. Park, D. Kim, and B. M. Kim, “Simple high-speed confocal line-scanning microscope,” Opt. Express 13, 5151–5156 (2005).
    [CrossRef] [PubMed]
  18. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23, 1152–1154 (1998).
    [CrossRef]
  19. R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11, 064011 (2006).
    [CrossRef]
  20. G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
    [CrossRef]
  21. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
    [CrossRef]
  22. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77, 3341–3349 (1999).
    [CrossRef] [PubMed]
  23. W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  24. J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
    [CrossRef] [PubMed]
  25. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
    [CrossRef] [PubMed]
  26. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  27. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Control and measurement of spatially inhomogeneous polarization distributions in third-harmonic generation microscopy,” Opt. Lett. 34, 1090–1092 (2009).
    [CrossRef] [PubMed]
  28. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34, 1240–1242 (2009).
    [CrossRef] [PubMed]
  29. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851 (2010).
    [CrossRef] [PubMed]
  30. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
    [CrossRef]
  31. K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (mmm) at a frame rate beyond 600 hz,” Opt. Express 15, 10991–10998 (2007).
    [CrossRef] [PubMed]
  32. R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16, 10364–10371 (2008).
    [CrossRef] [PubMed]
  33. D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, “Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy,” Opt. Express 7, 273–279 (2000).
    [CrossRef] [PubMed]
  34. A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18, 19645–19655 (2010).
    [CrossRef] [PubMed]
  35. R. Juskaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
    [CrossRef] [PubMed]
  36. R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt. 45, 5037–5045 (2006).
    [CrossRef] [PubMed]
  37. J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process Mag. 25, 14–20 (2008).
    [CrossRef]
  38. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
    [CrossRef]
  39. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [CrossRef]
  40. J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30, 1720–1724 (1991).
    [CrossRef]
  41. L. M. Biberman, Reticles in electro-optical devices, International series of monographs in infrared science and technology (Pergamon Press, 1966), Vol. 1.
  42. J. K. Bae, Y. H. Doh, D. S. Noh, and S. J. Kim, “Imaging system using frequency modulation time division multiplexing hybrid reticle,” Opt. Eng. 37, 2119–2123 (1998).
    [CrossRef]
  43. R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. F. Williams, “Parameters of spinning fm reticles,” Appl. Opt. 30, 887–895 (1991).
    [CrossRef] [PubMed]
  44. D. Lovell, “Electro-optic position indicator system,” U.S. Patent 2,997,699 (22Aug.1961).
  45. J. T. Motz, D. Yelin, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Spectral- and frequency-encoded fluorescence imaging,” Opt. Lett. 30, 2760–2762 (2005).
    [CrossRef] [PubMed]
  46. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2004).
    [PubMed]

2010 (2)

2009 (7)

S. Gekle, J. M. Gordillo, D. van der Meer, and D. Lohse, “High-speed jet formation after solid object impact,” Phys. Rev. Lett. 102, 034502 (2009).
[CrossRef] [PubMed]

J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
[CrossRef] [PubMed]

M. El-Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, “Cmos image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[CrossRef]

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[CrossRef] [PubMed]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Control and measurement of spatially inhomogeneous polarization distributions in third-harmonic generation microscopy,” Opt. Lett. 34, 1090–1092 (2009).
[CrossRef] [PubMed]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34, 1240–1242 (2009).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source oct imaging of the anterior segment of human eye at 200 khz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[CrossRef] [PubMed]

2008 (11)

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process Mag. 25, 14–20 (2008).
[CrossRef]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[CrossRef]

S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40, 257–285 (2008).
[CrossRef]

N. Ji, H. Shroff, H. N. Zhong, and E. Betzig, “Advances in the speed and resolution of light microscopy,” Curr. Opin. Neurobiol. 18, 605–616 (2008).
[CrossRef]

R. A. Niesner, V. Andresen, and M. Gunzer, “Intravital two-photon microscopy: focus on speed and time resolved imaging modalities,” Immunol. Rev. 221, 7–25 (2008).
[CrossRef] [PubMed]

C. Nitschke, A. Garin, M. Kosco-Vilbois, and M. Gunzer, “3D and 4D imaging of immune cells in vitro and in vivo,” Histochem. Cell Biol. 130, 1053–1062 (2008).
[CrossRef] [PubMed]

G. D. Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11, 713–720 (2008).
[CrossRef]

P. J. Scherz, J. Huisken, P. Sahai-Hernandez, and D. Y. R. Stainier, “High-speed imaging of developing heart valves reveals interplay of morphogenesis and function,” Development 135, 1179–1187 (2008).
[CrossRef] [PubMed]

G. Stutzmann, “Seeing the brain in action: how multiphoton imaging has advanced our understanding of neuronal function,” Microsc. Microanal. 14, 482–491 (2008).
[CrossRef] [PubMed]

R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16, 10364–10371 (2008).
[CrossRef] [PubMed]

2007 (4)

S. Blonski and T. A. Kowalewski, “Piv analysis of turbulent flow in a micro-channel,” Theor. Appl. Mech. 45, 489–503 (2007).

D. Hessman, M. Lexholm, K. A. Dick, S. Ghatnekar-Nilsson, and L. Samuelson, “High-speed nanometer-scale imaging for studies of nanowire mechanics,” Small 3, 1699–1702 (2007).
[CrossRef] [PubMed]

W. Gobel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3d laser scanning,” Nat. Methods 4, 73–79 (2007).
[CrossRef]

K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (mmm) at a frame rate beyond 600 hz,” Opt. Express 15, 10991–10998 (2007).
[CrossRef] [PubMed]

2006 (2)

R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt. 45, 5037–5045 (2006).
[CrossRef] [PubMed]

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11, 064011 (2006).
[CrossRef]

2005 (2)

2002 (1)

J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

1998 (4)

1997 (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

1996 (1)

R. Juskaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
[CrossRef] [PubMed]

1991 (2)

R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. F. Williams, “Parameters of spinning fm reticles,” Appl. Opt. 30, 887–895 (1991).
[CrossRef] [PubMed]

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30, 1720–1724 (1991).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1988 (1)

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Andresen, V.

R. A. Niesner, V. Andresen, and M. Gunzer, “Intravital two-photon microscopy: focus on speed and time resolved imaging modalities,” Immunol. Rev. 221, 7–25 (2008).
[CrossRef] [PubMed]

Armstrong, D.

M. El-Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, “Cmos image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[CrossRef]

Art, J. J.

J. J. Art and M. B. Goodman, “Rapid-scanning confocal microscopy,” in Methods in Cell Biology, B. Matsumoto, ed. (Academic Press, 1993), Vol 38, pp. 47–77.
[PubMed]

Bae, J. K.

J. K. Bae, Y. H. Doh, D. S. Noh, and S. J. Kim, “Imaging system using frequency modulation time division multiplexing hybrid reticle,” Opt. Eng. 37, 2119–2123 (1998).
[CrossRef]

Bahlmann, K.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

Bartels, R. A.

Barzda, V.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[CrossRef] [PubMed]

R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16, 10364–10371 (2008).
[CrossRef] [PubMed]

Bellve, K.

Benedetti, P. A.

Betzig, E.

N. Ji, H. Shroff, H. N. Zhong, and E. Betzig, “Advances in the speed and resolution of light microscopy,” Curr. Opin. Neurobiol. 18, 605–616 (2008).
[CrossRef]

Bewersdorf, J.

Biberman, L. M.

L. M. Biberman, Reticles in electro-optical devices, International series of monographs in infrared science and technology (Pergamon Press, 1966), Vol. 1.

Blonski, S.

S. Blonski and T. A. Kowalewski, “Piv analysis of turbulent flow in a micro-channel,” Theor. Appl. Mech. 45, 489–503 (2007).

Boreman, G. D.

Bouma, B. E.

Brakenhoff, G. J.

Campagnola, P. J.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77, 3341–3349 (1999).
[CrossRef] [PubMed]

Carriles, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[CrossRef] [PubMed]

R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16, 10364–10371 (2008).
[CrossRef] [PubMed]

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

Cisek, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[CrossRef] [PubMed]

Corle, T. R.

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Deen, M. J.

M. El-Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, “Cmos image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Dick, K. A.

D. Hessman, M. Lexholm, K. A. Dick, S. Ghatnekar-Nilsson, and L. Samuelson, “High-speed nanometer-scale imaging for studies of nanowire mechanics,” Small 3, 1699–1702 (2007).
[CrossRef] [PubMed]

Doh, Y. H.

J. K. Bae, Y. H. Doh, D. S. Noh, and S. J. Kim, “Imaging system using frequency modulation time division multiplexing hybrid reticle,” Opt. Eng. 37, 2119–2123 (1998).
[CrossRef]

Driggers, R. G.

R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. F. Williams, “Parameters of spinning fm reticles,” Appl. Opt. 30, 887–895 (1991).
[CrossRef] [PubMed]

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30, 1720–1724 (1991).
[CrossRef]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

El-Desouki, M.

M. El-Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, “Cmos image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[CrossRef]

Etoh, T. G.

S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40, 257–285 (2008).
[CrossRef]

Evans, D. J.

J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
[CrossRef] [PubMed]

Fang, Q. Y.

M. El-Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, “Cmos image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[CrossRef]

Field, J. J.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[CrossRef] [PubMed]

Fink, R.

G. D. Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11, 713–720 (2008).
[CrossRef]

Fittinghoff, D. N.

Garin, A.

C. Nitschke, A. Garin, M. Kosco-Vilbois, and M. Gunzer, “3D and 4D imaging of immune cells in vitro and in vivo,” Histochem. Cell Biol. 130, 1053–1062 (2008).
[CrossRef] [PubMed]

Gekle, S.

S. Gekle, J. M. Gordillo, D. van der Meer, and D. Lohse, “High-speed jet formation after solid object impact,” Phys. Rev. Lett. 102, 034502 (2009).
[CrossRef] [PubMed]

Ghatnekar-Nilsson, S.

D. Hessman, M. Lexholm, K. A. Dick, S. Ghatnekar-Nilsson, and L. Samuelson, “High-speed nanometer-scale imaging for studies of nanowire mechanics,” Small 3, 1699–1702 (2007).
[CrossRef] [PubMed]

Gobel, W.

W. Gobel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3d laser scanning,” Nat. Methods 4, 73–79 (2007).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2004).
[PubMed]

Goodman, M. B.

J. J. Art and M. B. Goodman, “Rapid-scanning confocal microscopy,” in Methods in Cell Biology, B. Matsumoto, ed. (Academic Press, 1993), Vol 38, pp. 47–77.
[PubMed]

Gora, M.

Gordillo, J. M.

S. Gekle, J. M. Gordillo, D. van der Meer, and D. Lohse, “High-speed jet formation after solid object impact,” Phys. Rev. Lett. 102, 034502 (2009).
[CrossRef] [PubMed]

Griffin, S. T.

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30, 1720–1724 (1991).
[CrossRef]

Gunzer, M.

C. Nitschke, A. Garin, M. Kosco-Vilbois, and M. Gunzer, “3D and 4D imaging of immune cells in vitro and in vivo,” Histochem. Cell Biol. 130, 1053–1062 (2008).
[CrossRef] [PubMed]

R. A. Niesner, V. Andresen, and M. Gunzer, “Intravital two-photon microscopy: focus on speed and time resolved imaging modalities,” Immunol. Rev. 221, 7–25 (2008).
[CrossRef] [PubMed]

Guo, Q.

J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
[CrossRef] [PubMed]

Halford, C. E.

R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. F. Williams, “Parameters of spinning fm reticles,” Appl. Opt. 30, 887–895 (1991).
[CrossRef] [PubMed]

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30, 1720–1724 (1991).
[CrossRef]

Han, S. M.

Heintzmann, R.

Hell, S. W.

Helmchen, F.

W. Gobel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3d laser scanning,” Nat. Methods 4, 73–79 (2007).
[CrossRef]

Hessman, D.

D. Hessman, M. Lexholm, K. A. Dick, S. Ghatnekar-Nilsson, and L. Samuelson, “High-speed nanometer-scale imaging for studies of nanowire mechanics,” Small 3, 1699–1702 (2007).
[CrossRef] [PubMed]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Hoover, E. E.

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Huber, R.

Huisken, J.

P. J. Scherz, J. Huisken, P. Sahai-Hernandez, and D. Y. R. Stainier, “High-speed imaging of developing heart valves reveals interplay of morphogenesis and function,” Development 135, 1179–1187 (2008).
[CrossRef] [PubMed]

Im, K. B.

Jaeger, H. M.

J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
[CrossRef] [PubMed]

Ji, N.

N. Ji, H. Shroff, H. N. Zhong, and E. Betzig, “Advances in the speed and resolution of light microscopy,” Curr. Opin. Neurobiol. 18, 605–616 (2008).
[CrossRef]

Juskaitis, R.

R. Juskaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
[CrossRef] [PubMed]

Kaluzny, B. J.

Kampa, B. M.

W. Gobel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3d laser scanning,” Nat. Methods 4, 73–79 (2007).
[CrossRef]

Kapit, E.

J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
[CrossRef] [PubMed]

Karnowski, K.

Kelleher, K.

G. D. Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11, 713–720 (2008).
[CrossRef]

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

Kempe, M.

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11, 064011 (2006).
[CrossRef]

Kim, B. M.

Kim, D.

Kim, S. J.

J. K. Bae, Y. H. Doh, D. S. Noh, and S. J. Kim, “Imaging system using frequency modulation time division multiplexing hybrid reticle,” Opt. Eng. 37, 2119–2123 (1998).
[CrossRef]

Kino, G. S.

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Kirber, M.

Kosco-Vilbois, M.

C. Nitschke, A. Garin, M. Kosco-Vilbois, and M. Gunzer, “3D and 4D imaging of immune cells in vitro and in vivo,” Histochem. Cell Biol. 130, 1053–1062 (2008).
[CrossRef] [PubMed]

Kosicki, B.

Kowalczyk, A.

Kowalewski, T. A.

S. Blonski and T. A. Kowalewski, “Piv analysis of turbulent flow in a micro-channel,” Theor. Appl. Mech. 45, 489–503 (2007).

Kozubek, M.

R. Juskaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
[CrossRef] [PubMed]

Lattman, D.

Lechleiter, J. D.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
[CrossRef] [PubMed]

Lewis, A.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77, 3341–3349 (1999).
[CrossRef] [PubMed]

Lexholm, M.

D. Hessman, M. Lexholm, K. A. Dick, S. Ghatnekar-Nilsson, and L. Samuelson, “High-speed nanometer-scale imaging for studies of nanowire mechanics,” Small 3, 1699–1702 (2007).
[CrossRef] [PubMed]

Lin, D. T.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
[CrossRef] [PubMed]

Liu, L.

M. El-Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, “Cmos image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[CrossRef]

Loew, L. M.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77, 3341–3349 (1999).
[CrossRef] [PubMed]

Lohse, D.

S. Gekle, J. M. Gordillo, D. van der Meer, and D. Lohse, “High-speed jet formation after solid object impact,” Phys. Rev. Lett. 102, 034502 (2009).
[CrossRef] [PubMed]

Lovell, D.

D. Lovell, “Electro-optic position indicator system,” U.S. Patent 2,997,699 (22Aug.1961).

Masihzadeh, O.

McGonagle, W.

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

Mobius, M. E.

J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
[CrossRef] [PubMed]

Motz, J. T.

Muller, M.

Neil, M. A. A.

R. Juskaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
[CrossRef] [PubMed]

Niesner, R. A.

R. A. Niesner, V. Andresen, and M. Gunzer, “Intravital two-photon microscopy: focus on speed and time resolved imaging modalities,” Immunol. Rev. 221, 7–25 (2008).
[CrossRef] [PubMed]

Nitschke, C.

C. Nitschke, A. Garin, M. Kosco-Vilbois, and M. Gunzer, “3D and 4D imaging of immune cells in vitro and in vivo,” Histochem. Cell Biol. 130, 1053–1062 (2008).
[CrossRef] [PubMed]

Noh, D. S.

J. K. Bae, Y. H. Doh, D. S. Noh, and S. J. Kim, “Imaging system using frequency modulation time division multiplexing hybrid reticle,” Opt. Eng. 37, 2119–2123 (1998).
[CrossRef]

Oyarte, L.

J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
[CrossRef] [PubMed]

Park, H.

Pick, R.

Reddy, G. D.

G. D. Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11, 713–720 (2008).
[CrossRef]

Reich, R.

Romberg, J.

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process Mag. 25, 14–20 (2008).
[CrossRef]

Royer, J. R.

J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
[CrossRef] [PubMed]

Saggau, P.

G. D. Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11, 713–720 (2008).
[CrossRef]

Sahai-Hernandez, P.

P. J. Scherz, J. Huisken, P. Sahai-Hernandez, and D. Y. R. Stainier, “High-speed imaging of developing heart valves reveals interplay of morphogenesis and function,” Development 135, 1179–1187 (2008).
[CrossRef] [PubMed]

Samuelson, L.

D. Hessman, M. Lexholm, K. A. Dick, S. Ghatnekar-Nilsson, and L. Samuelson, “High-speed nanometer-scale imaging for studies of nanowire mechanics,” Small 3, 1699–1702 (2007).
[CrossRef] [PubMed]

Sanders, J. S.

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30, 1720–1724 (1991).
[CrossRef]

Schafer, D. N.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[CrossRef] [PubMed]

Scherz, P. J.

P. J. Scherz, J. Huisken, P. Sahai-Hernandez, and D. Y. R. Stainier, “High-speed imaging of developing heart valves reveals interplay of morphogenesis and function,” Development 135, 1179–1187 (2008).
[CrossRef] [PubMed]

Schlup, P.

Shank, C. V.

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[CrossRef]

Sheetz, K. E.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[CrossRef] [PubMed]

R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16, 10364–10371 (2008).
[CrossRef] [PubMed]

Shroff, H.

N. Ji, H. Shroff, H. N. Zhong, and E. Betzig, “Advances in the speed and resolution of light microscopy,” Curr. Opin. Neurobiol. 18, 605–616 (2008).
[CrossRef]

Sieneart, I.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
[CrossRef] [PubMed]

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

So, P. T. C.

Squier, J. A.

Stainier, D. Y. R.

P. J. Scherz, J. Huisken, P. Sahai-Hernandez, and D. Y. R. Stainier, “High-speed imaging of developing heart valves reveals interplay of morphogenesis and function,” Development 135, 1179–1187 (2008).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Stutzmann, G.

G. Stutzmann, “Seeing the brain in action: how multiphoton imaging has advanced our understanding of neuronal function,” Microsc. Microanal. 14, 482–491 (2008).
[CrossRef] [PubMed]

Sylvester, A. W.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[CrossRef] [PubMed]

Szkulmowski, M.

Takehara, K.

S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40, 257–285 (2008).
[CrossRef]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

Tearney, G. J.

Thoroddsen, S. T.

S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40, 257–285 (2008).
[CrossRef]

Tse, F.

M. El-Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, “Cmos image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[CrossRef]

Vakoc, B. J.

van der Meer, D.

S. Gekle, J. M. Gordillo, D. van der Meer, and D. Lohse, “High-speed jet formation after solid object impact,” Phys. Rev. Lett. 102, 034502 (2009).
[CrossRef] [PubMed]

Vaziri, A.

Waitukaitis, S. R.

J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
[CrossRef] [PubMed]

Webb, R. H.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Wei, M. D.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77, 3341–3349 (1999).
[CrossRef] [PubMed]

Williams, K. F.

Wilson, K. R.

Wilson, T.

R. Juskaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
[CrossRef] [PubMed]

Wiseman, P. W.

Wojtkowski, M.

Wolleschensky, R.

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11, 064011 (2006).
[CrossRef]

Xiao, G. Q.

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Xie, X. S.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Yelin, D.

Zhong, H. N.

N. Ji, H. Shroff, H. N. Zhong, and E. Betzig, “Advances in the speed and resolution of light microscopy,” Curr. Opin. Neurobiol. 18, 605–616 (2008).
[CrossRef]

Zimmermann, B.

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11, 064011 (2006).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Annu. Rev. Fluid Mech. (1)

S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40, 257–285 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Biophys. J. (1)

J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol. (1)

N. Ji, H. Shroff, H. N. Zhong, and E. Betzig, “Advances in the speed and resolution of light microscopy,” Curr. Opin. Neurobiol. 18, 605–616 (2008).
[CrossRef]

Development (1)

P. J. Scherz, J. Huisken, P. Sahai-Hernandez, and D. Y. R. Stainier, “High-speed imaging of developing heart valves reveals interplay of morphogenesis and function,” Development 135, 1179–1187 (2008).
[CrossRef] [PubMed]

Histochem. Cell Biol. (1)

C. Nitschke, A. Garin, M. Kosco-Vilbois, and M. Gunzer, “3D and 4D imaging of immune cells in vitro and in vivo,” Histochem. Cell Biol. 130, 1053–1062 (2008).
[CrossRef] [PubMed]

IEEE Signal Process Mag. (1)

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process Mag. 25, 14–20 (2008).
[CrossRef]

Immunol. Rev. (1)

R. A. Niesner, V. Andresen, and M. Gunzer, “Intravital two-photon microscopy: focus on speed and time resolved imaging modalities,” Immunol. Rev. 221, 7–25 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11, 064011 (2006).
[CrossRef]

Microsc. Microanal. (1)

G. Stutzmann, “Seeing the brain in action: how multiphoton imaging has advanced our understanding of neuronal function,” Microsc. Microanal. 14, 482–491 (2008).
[CrossRef] [PubMed]

Nat. Methods (1)

W. Gobel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3d laser scanning,” Nat. Methods 4, 73–79 (2007).
[CrossRef]

Nat. Neurosci. (1)

G. D. Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11, 713–720 (2008).
[CrossRef]

Nature (2)

J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009).
[CrossRef] [PubMed]

R. Juskaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
[CrossRef] [PubMed]

Opt. Eng. (2)

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30, 1720–1724 (1991).
[CrossRef]

J. K. Bae, Y. H. Doh, D. S. Noh, and S. J. Kim, “Imaging system using frequency modulation time division multiplexing hybrid reticle,” Opt. Eng. 37, 2119–2123 (1998).
[CrossRef]

Opt. Express (8)

J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
[CrossRef] [PubMed]

D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, “Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy,” Opt. Express 7, 273–279 (2000).
[CrossRef] [PubMed]

K. B. Im, S. M. Han, H. Park, D. Kim, and B. M. Kim, “Simple high-speed confocal line-scanning microscope,” Opt. Express 13, 5151–5156 (2005).
[CrossRef] [PubMed]

K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (mmm) at a frame rate beyond 600 hz,” Opt. Express 15, 10991–10998 (2007).
[CrossRef] [PubMed]

R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16, 10364–10371 (2008).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source oct imaging of the anterior segment of human eye at 200 khz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009).
[CrossRef] [PubMed]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851 (2010).
[CrossRef] [PubMed]

A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18, 19645–19655 (2010).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

S. Gekle, J. M. Gordillo, D. van der Meer, and D. Lohse, “High-speed jet formation after solid object impact,” Phys. Rev. Lett. 102, 034502 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009).
[CrossRef] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Sensors (1)

M. El-Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, “Cmos image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[CrossRef]

Small (1)

D. Hessman, M. Lexholm, K. A. Dick, S. Ghatnekar-Nilsson, and L. Samuelson, “High-speed nanometer-scale imaging for studies of nanowire mechanics,” Small 3, 1699–1702 (2007).
[CrossRef] [PubMed]

Theor. Appl. Mech. (1)

S. Blonski and T. A. Kowalewski, “Piv analysis of turbulent flow in a micro-channel,” Theor. Appl. Mech. 45, 489–503 (2007).

Other (5)

J. J. Art and M. B. Goodman, “Rapid-scanning confocal microscopy,” in Methods in Cell Biology, B. Matsumoto, ed. (Academic Press, 1993), Vol 38, pp. 47–77.
[PubMed]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77, 3341–3349 (1999).
[CrossRef] [PubMed]

L. M. Biberman, Reticles in electro-optical devices, International series of monographs in infrared science and technology (Pergamon Press, 1966), Vol. 1.

D. Lovell, “Electro-optic position indicator system,” U.S. Patent 2,997,699 (22Aug.1961).

J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2004).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of imaging method.

Fig. 2
Fig. 2

Example mask pattern of Eq. (11) with parameters k0 = 0, Δk = 3 mm−1, and Δθ = 6 rad.

Fig. 3
Fig. 3

(a) Digitized time-domain signal collected for an unperturbed excitation beam, with the inset showing the coherence burst near t = 0. (b) Fourier transformed frequency domain signal of the shaded area of the time trace.

Fig. 4
Fig. 4

Space-to-frequency calibration, obtained by scanning a 2-μm slit across the modulated beam at the object plane. The beam intensity distribution at the object plane (black line, bottom axis) is found by summing the temporal trace at each slit position. The frequency bandwidth at a single position (left axis) reveals the system’s PSF. When the slit is removed, the resulting frequency distribution, mapped to the spatial coordinate (blue dashed line) shows excellent agreement with the beam profile.

Fig. 5
Fig. 5

(a) The signal obtained from a 150-μm pinhole contains additional structure, arising from variations in the modulation frequency as the disc revolves. (b) Imperfections in the modulation frequency are revealed by a spectrogram. (c) Frequency wobble correction removes structure on the slit transmission measurement.

Fig. 6
Fig. 6

(a) Image of 1951 USAF test pattern, assembled from a series of scanned SPIFI acquisitions. (b)–(d) Slices across bars of varying width showing image resolution performance.

Fig. 7
Fig. 7

Images obtained using (a) absorptive and (b) fluorescent SPIFI of a fluorescent sample image.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I obj ( x , t ) = I 0 | u ( x ) m ( x , t ) g ( x ) | 2
m ( x , t ) = w ( t ) 2 [ 1 + cos ( 2 π κ x t ) ] .
E obj ( x , t ) = E o 2 u ( x ) g ( x ) w ( t ) [ 1 + cos ( 2 π κ x t ) ] e i ω 0 t .
I obj ( x , t ) = I 0 1 4 | w ( t ) u ( x ) g ( x ) | 2 [ 3 2 + 2 cos ( 2 π κ x t ) + 1 2 cos ( 4 π κ x t ) ]
s 1 ( t ) = | w ( t ) | 2 | u ( x ) g ( x ) | 2 e j 2 π κ t x d x + c . c .
s 2 ( t ) = 1 4 | w ( t ) | 2 | u ( x ) g ( x ) | 2 e j 4 π κ t x d x + c . c .
s 1 ( t ) = | w ( t ) | 2 e j 2 π κ x c t | u ( x ) g ( x ) | 2 e j 2 π κ t x d x + c . c .
𝒢 ( f x ) = | u ( x ) g ( x ) | 2 e i 2 π f x x d x 𝔉 { | u ( x ) g ( x ) | 2 } ,
s 1 ( t ) = 2 | w ( t ) | 2 | 𝒢 ( κ t ) | cos ( 2 π f c t + 𝒢 ( κ t ) )
S ^ 1 + ( x = f κ 1 ) = 𝒲 ( κ x ) | u ( x ) g ( x ) | 2
m ( R , θ ) = 1 2 + 1 2 cos [ ( k 0 + Δ k R ) θ ]

Metrics