Abstract

We show a large enhancement of two-photon absorption processes in nanocrystal quantum dots and of light upconversion efficiency from the IR to the near-IR spectral regime, using a hybrid optical device in which near-IR emitting InAs quantum dots were embedded on top a metallic nanoslit array. The resonant enhancement of these nonlinear optical processes is due to the strong local electromagnetic field enhancements inside the nanoslit array structure at the extraordinary transmission resonances. A maximal two-photon absorption enhancement of more than 20 was inferred. Different high field regions were identified for different polarizations, which can be used for designing and optimizing efficient nonlinear processes in such hybrid structures. Combining nanocrystal quantum dots with subwavelength metallic nanostructures is therefore a promising way for a range of possible nonlinear optical devices.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
    [CrossRef] [PubMed]
  2. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
    [CrossRef] [PubMed]
  3. X. Gao, W. C. W. Chan, and S. Nie, "Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding," J. Biomed. Opt. 7, 532-537 (2002).
    [CrossRef] [PubMed]
  4. X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
    [CrossRef] [PubMed]
  5. S. C. Lee, S. Krishna, and S. R. J. Brueck, "Quantum dot infrared photodetector enhanced by surface plasma wave excitation," Opt. Express 17, 23160-23168 (2009).
    [CrossRef]
  6. A. J. Nozik, "Quantum dot solar cells," Physica E 14, 115-120 (2002).
    [CrossRef]
  7. G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
    [CrossRef]
  8. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
    [CrossRef] [PubMed]
  9. S. Hideaki, N. Kenich, O. Ichiro, S. Shigeo, and S. Yoshimasa, "Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser," Appl. Phys. Lett. 69, 3140-3142 (1996).
    [CrossRef]
  10. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, "1.3 μm room-temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, 2564-2566 (1998).
    [CrossRef]
  11. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000).
    [CrossRef] [PubMed]
  12. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
    [CrossRef] [PubMed]
  13. W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
    [CrossRef]
  14. C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, "Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003).
    [CrossRef]
  15. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
    [CrossRef]
  16. H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
    [CrossRef] [PubMed]
  17. S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
    [CrossRef] [PubMed]
  18. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
    [CrossRef]
  19. Y. Yingli, and W. Wei, "Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence," J. Opt. Soc. Am. B 26, 1897-1904 (2009).
    [CrossRef]
  20. I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, "Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots," Opt. Lett. 35, 1079-1081 (2010).
    [CrossRef] [PubMed]
  21. X. Xingsheng, Y. Toshiki, U. Rieko, and O. Akira, "Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals," Appl. Phys. Lett. 95, 221113 (2009).
    [CrossRef]
  22. Z. Lin, and J. Vučković, "Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities," Phys. Rev. B 81, 035301 (2010).
    [CrossRef]
  23. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  24. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
    [CrossRef]
  25. A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phys. Rev. B 66, 161403 (2002).
    [CrossRef]
  26. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  27. E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A 8, S94 (2006).
    [CrossRef]
  28. M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
    [CrossRef] [PubMed]
  29. I. Schwarz, N. Livneh, and R. Rapaport, "A unified analytical model for extraordinary transmission in subwavelength metallic gratings," arXiv:1011.3713v1 (2010).
  30. J. T. Shen, and P. M. Platzman, "Properties of a one-dimensional metallo-photonic crystal," Phys. Rev. B 70, 035101 (2004).
    [CrossRef]
  31. G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in nonlinear surface-plasmon polaritonic crystals," Phys. Rev. Lett. 97, 057402 (2006).
    [CrossRef] [PubMed]
  32. E. Verhagen, L. Kuipers, and A. Polman, "Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence," Opt. Express 17, 14586-14598 (2009).
    [CrossRef] [PubMed]
  33. U. Woggon, Optical properties of semiconductor quantum dots. Springer tracts in modern physics (Berlin: Springer-Verlag, 1997).
  34. Y. Cao, and U. Banin, "Growth and properties of semiconductor core/shell nanocrystals with InAs cores," J. Am. Chem. Soc. 122, 9692-9702 (2000).
    [CrossRef]
  35. G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
    [CrossRef]
  36. R. W. Boyd, Nonlinear Optics Second Ed. (Academic Press, 2003).
  37. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).

2010 (5)

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
[CrossRef] [PubMed]

I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, "Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots," Opt. Lett. 35, 1079-1081 (2010).
[CrossRef] [PubMed]

Z. Lin, and J. Vučković, "Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities," Phys. Rev. B 81, 035301 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

2009 (4)

E. Verhagen, L. Kuipers, and A. Polman, "Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence," Opt. Express 17, 14586-14598 (2009).
[CrossRef] [PubMed]

Y. Yingli, and W. Wei, "Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence," J. Opt. Soc. Am. B 26, 1897-1904 (2009).
[CrossRef]

X. Xingsheng, Y. Toshiki, U. Rieko, and O. Akira, "Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals," Appl. Phys. Lett. 95, 221113 (2009).
[CrossRef]

S. C. Lee, S. Krishna, and S. R. J. Brueck, "Quantum dot infrared photodetector enhanced by surface plasma wave excitation," Opt. Express 17, 23160-23168 (2009).
[CrossRef]

2008 (1)

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

2007 (1)

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

2006 (3)

S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
[CrossRef] [PubMed]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A 8, S94 (2006).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in nonlinear surface-plasmon polaritonic crystals," Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

2005 (3)

G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
[CrossRef]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

2004 (1)

J. T. Shen, and P. M. Platzman, "Properties of a one-dimensional metallo-photonic crystal," Phys. Rev. B 70, 035101 (2004).
[CrossRef]

2003 (3)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
[CrossRef]

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, "Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

2002 (6)

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
[CrossRef]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

X. Gao, W. C. W. Chan, and S. Nie, "Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding," J. Biomed. Opt. 7, 532-537 (2002).
[CrossRef] [PubMed]

A. J. Nozik, "Quantum dot solar cells," Physica E 14, 115-120 (2002).
[CrossRef]

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phys. Rev. B 66, 161403 (2002).
[CrossRef]

2000 (3)

Y. Cao, and U. Banin, "Growth and properties of semiconductor core/shell nanocrystals with InAs cores," J. Am. Chem. Soc. 122, 9692-9702 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000).
[CrossRef] [PubMed]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, "1.3 μm room-temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, 2564-2566 (1998).
[CrossRef]

1996 (1)

S. Hideaki, N. Kenich, O. Ichiro, S. Shigeo, and S. Yoshimasa, "Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser," Appl. Phys. Lett. 69, 3140-3142 (1996).
[CrossRef]

Aharoni, A.

G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
[CrossRef]

Akira, O.

X. Xingsheng, Y. Toshiki, U. Rieko, and O. Akira, "Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals," Appl. Phys. Lett. 95, 221113 (2009).
[CrossRef]

Aouani, H.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
[CrossRef] [PubMed]

Artemyev, M.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
[CrossRef]

Banin, U.

G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
[CrossRef]

Y. Cao, and U. Banin, "Growth and properties of semiconductor core/shell nanocrystals with InAs cores," J. Am. Chem. Soc. 122, 9692-9702 (2000).
[CrossRef]

Barbara, A.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Barbosa, L. C.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Brueck, S. R. J.

S. C. Lee, S. Krishna, and S. R. J. Brueck, "Quantum dot infrared photodetector enhanced by surface plasma wave excitation," Opt. Express 17, 23160-23168 (2009).
[CrossRef]

Buratto, S. K.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000).
[CrossRef] [PubMed]

Buso, D.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

Bustarret, E.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Cao, Y.

Y. Cao, and U. Banin, "Growth and properties of semiconductor core/shell nanocrystals with InAs cores," J. Am. Chem. Soc. 122, 9692-9702 (2000).
[CrossRef]

Carson, P. J.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000).
[CrossRef] [PubMed]

Cesar, C. L.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

Chan, W. C. W.

X. Gao, W. C. W. Chan, and S. Nie, "Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding," J. Biomed. Opt. 7, 532-537 (2002).
[CrossRef] [PubMed]

Chen, G.

G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
[CrossRef]

Chen, G. B.

W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
[CrossRef]

Chen, X. S.

W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
[CrossRef]

Cheng, Y. M.

S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
[CrossRef] [PubMed]

Cho, E.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Cho, Y.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Chou, P. T.

S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
[CrossRef] [PubMed]

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Conibeer, G.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Cruz, C. H. B.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

Dancus, I.

I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, "Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots," Opt. Lett. 35, 1079-1081 (2010).
[CrossRef] [PubMed]

Deppe, D. G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, "1.3 μm room-temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, 2564-2566 (1998).
[CrossRef]

Devaux, E.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
[CrossRef] [PubMed]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Du, H.

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, "Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

Dunbar, L. A.

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Eckert, R.

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

Eisler, H.-J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Eychmüller, A.

I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, "Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots," Opt. Lett. 35, 1079-1081 (2010).
[CrossRef] [PubMed]

Fangsuwannarak, T.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Fattal, D.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

Flynn, C.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Fu, J.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

Fuchs, D. T.

G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
[CrossRef]

Gachet, D.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
[CrossRef] [PubMed]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Gao, X.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

X. Gao, W. C. W. Chan, and S. Nie, "Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding," J. Biomed. Opt. 7, 532-537 (2002).
[CrossRef] [PubMed]

Gaponenko, S.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
[CrossRef]

Gaponik, N.

I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, "Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots," Opt. Lett. 35, 1079-1081 (2010).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

García-Vidal, F. J.

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A 8, S94 (2006).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Green, M.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Guillaumée, M.

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

Hagan, D. J.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

Hahn, M. A.

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, "Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

Hao, X.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Hideaki, S.

S. Hideaki, N. Kenich, O. Ichiro, S. Shigeo, and S. Yoshimasa, "Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser," Appl. Phys. Lett. 69, 3140-3142 (1996).
[CrossRef]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Hsieh, C. C.

S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
[CrossRef] [PubMed]

Hsu, C. C.

S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
[CrossRef] [PubMed]

Huang, S.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Huang, Y.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Huffaker, D. L.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, "1.3 μm room-temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, 2564-2566 (1998).
[CrossRef]

Ichiro, O.

S. Hideaki, N. Kenich, O. Ichiro, S. Shigeo, and S. Yoshimasa, "Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser," Appl. Phys. Lett. 69, 3140-3142 (1996).
[CrossRef]

Imamoglu, A.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000).
[CrossRef] [PubMed]

Itzhakov, S.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
[CrossRef] [PubMed]

Ji, Y. L.

W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
[CrossRef]

Kenich, N.

S. Hideaki, N. Kenich, O. Ichiro, S. Shigeo, and S. Yoshimasa, "Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser," Appl. Phys. Lett. 69, 3140-3142 (1996).
[CrossRef]

Klein, M. J. K.

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Knig, D.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Krauss, T. D.

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, "Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

Krishna, S.

S. C. Lee, S. Krishna, and S. R. J. Brueck, "Quantum dot infrared photodetector enhanced by surface plasma wave excitation," Opt. Express 17, 23160-23168 (2009).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

E. Verhagen, L. Kuipers, and A. Polman, "Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence," Opt. Express 17, 14586-14598 (2009).
[CrossRef] [PubMed]

Kulakovich, O.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
[CrossRef]

Lai, C. W.

S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
[CrossRef] [PubMed]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Lee, S. C.

S. C. Lee, S. Krishna, and S. R. J. Brueck, "Quantum dot infrared photodetector enhanced by surface plasma wave excitation," Opt. Express 17, 23160-23168 (2009).
[CrossRef]

Lesnyak, V.

I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, "Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots," Opt. Lett. 35, 1079-1081 (2010).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Lin, S. H.

S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
[CrossRef] [PubMed]

Lin, Z.

Z. Lin, and J. Vučković, "Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities," Phys. Rev. B 81, 035301 (2010).
[CrossRef]

Lipson, M.

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, "Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

Lopez-Rios, T.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Lovinger, A. J.

G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
[CrossRef]

Lu, W.

W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
[CrossRef]

Lucas, L.

G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Mansfield, D.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Marshall, F. F.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

Martín-Moreno, L.

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A 8, S94 (2006).
[CrossRef]

Martucci, A.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

Maskevich, S.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
[CrossRef]

Mason, M. D.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000).
[CrossRef] [PubMed]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Michler, P.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000).
[CrossRef] [PubMed]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A 8, S94 (2006).
[CrossRef]

Nabiev, I.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
[CrossRef]

Nie, S.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

X. Gao, W. C. W. Chan, and S. Nie, "Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding," J. Biomed. Opt. 7, 532-537 (2002).
[CrossRef] [PubMed]

Nikitin, M. Y.

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

Nozik, A. J.

A. J. Nozik, "Quantum dot solar cells," Physica E 14, 115-120 (2002).
[CrossRef]

Oron, D.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
[CrossRef] [PubMed]

Padilha, L. A.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

Park, G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, "1.3 μm room-temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, 2564-2566 (1998).
[CrossRef]

Park, S.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Petris, A.

I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, "Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots," Opt. Lett. 35, 1079-1081 (2010).
[CrossRef] [PubMed]

Petros, J. A.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Pink, E.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Platzman, P. M.

J. T. Shen, and P. M. Platzman, "Properties of a one-dimensional metallo-photonic crystal," Phys. Rev. B 70, 035101 (2004).
[CrossRef]

Poitras, C. B.

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, "Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in nonlinear surface-plasmon polaritonic crystals," Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Polman, A.

E. Verhagen, L. Kuipers, and A. Polman, "Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence," Opt. Express 17, 14586-14598 (2009).
[CrossRef] [PubMed]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Pu, S. C.

S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
[CrossRef] [PubMed]

Puzzer, T.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Quémerais, P.

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Rapaport, R.

G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
[CrossRef]

Rieko, U.

X. Xingsheng, Y. Toshiki, U. Rieko, and O. Akira, "Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals," Appl. Phys. Lett. 95, 221113 (2009).
[CrossRef]

Rigneault, H.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
[CrossRef] [PubMed]

Santori, C.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

Scardera, G.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Shchekin, O. B.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, "1.3 μm room-temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, 2564-2566 (1998).
[CrossRef]

Shen, J. T.

J. T. Shen, and P. M. Platzman, "Properties of a one-dimensional metallo-photonic crystal," Phys. Rev. B 70, 035101 (2004).
[CrossRef]

Shen, S. C.

W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
[CrossRef]

Shigeo, S.

S. Hideaki, N. Kenich, O. Ichiro, S. Shigeo, and S. Yoshimasa, "Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser," Appl. Phys. Lett. 69, 3140-3142 (1996).
[CrossRef]

Simons, J. W.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

Solomon, G. S.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

Song, D.

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Spassov, V.

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

Stanley, R. P.

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

Strekal, N.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
[CrossRef]

Strouse, G. F.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000).
[CrossRef] [PubMed]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Tang, N. Y.

W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Toshiki, Y.

X. Xingsheng, Y. Toshiki, U. Rieko, and O. Akira, "Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals," Appl. Phys. Lett. 95, 221113 (2009).
[CrossRef]

Treacy, M. M. J.

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Van Stryland, E. W.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

Verhagen, E.

E. Verhagen, L. Kuipers, and A. Polman, "Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence," Opt. Express 17, 14586-14598 (2009).
[CrossRef] [PubMed]

Vilan, S.

G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
[CrossRef]

Vlad, V. I.

I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, "Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots," Opt. Lett. 35, 1079-1081 (2010).
[CrossRef] [PubMed]

Vuckovic, J.

Z. Lin, and J. Vučković, "Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities," Phys. Rev. B 81, 035301 (2010).
[CrossRef]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

Webb, W. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Wei, W.

Y. Yingli, and W. Wei, "Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence," J. Opt. Soc. Am. B 26, 1897-1904 (2009).
[CrossRef]

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Wenger, J.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
[CrossRef] [PubMed]

Willander, M.

W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
[CrossRef]

Williams, R. M.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Woggon, U.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in nonlinear surface-plasmon polaritonic crystals," Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Xingsheng, X.

X. Xingsheng, Y. Toshiki, U. Rieko, and O. Akira, "Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals," Appl. Phys. Lett. 95, 221113 (2009).
[CrossRef]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Yamamoto, Y.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

Yang, L.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

Yang, M. J.

S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
[CrossRef] [PubMed]

Yaroshevich, A.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
[CrossRef]

Yingli, Y.

Y. Yingli, and W. Wei, "Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence," J. Opt. Soc. Am. B 26, 1897-1904 (2009).
[CrossRef]

Yoshimasa, S.

S. Hideaki, N. Kenich, O. Ichiro, S. Shigeo, and S. Yoshimasa, "Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser," Appl. Phys. Lett. 69, 3140-3142 (1996).
[CrossRef]

Zayats, A. V.

G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in nonlinear surface-plasmon polaritonic crystals," Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Zhao, Q. X.

W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
[CrossRef]

Zipfel, W. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

Zou, Z.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, "1.3 μm room-temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, 2564-2566 (1998).
[CrossRef]

ACS Nano (1)

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003).
[CrossRef]

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, "Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

S. Hideaki, N. Kenich, O. Ichiro, S. Shigeo, and S. Yoshimasa, "Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser," Appl. Phys. Lett. 69, 3140-3142 (1996).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, "1.3 μm room-temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, 2564-2566 (1998).
[CrossRef]

X. Xingsheng, Y. Toshiki, U. Rieko, and O. Akira, "Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals," Appl. Phys. Lett. 95, 221113 (2009).
[CrossRef]

G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005).
[CrossRef]

Curr. Opin. Biotechnol. (1)

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

Y. Cao, and U. Banin, "Growth and properties of semiconductor core/shell nanocrystals with InAs cores," J. Am. Chem. Soc. 122, 9692-9702 (2000).
[CrossRef]

J. Biomed. Opt. (1)

X. Gao, W. C. W. Chan, and S. Nie, "Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding," J. Biomed. Opt. 7, 532-537 (2002).
[CrossRef] [PubMed]

J. Opt. A (1)

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A 8, S94 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Y. Yingli, and W. Wei, "Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence," J. Opt. Soc. Am. B 26, 1897-1904 (2009).
[CrossRef]

Nano Lett. (1)

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002).
[CrossRef]

Nature (3)

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express (3)

E. Verhagen, L. Kuipers, and A. Polman, "Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence," Opt. Express 17, 14586-14598 (2009).
[CrossRef] [PubMed]

M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010).
[CrossRef] [PubMed]

S. C. Lee, S. Krishna, and S. R. J. Brueck, "Quantum dot infrared photodetector enhanced by surface plasma wave excitation," Opt. Express 17, 23160-23168 (2009).
[CrossRef]

Opt. Lett. (1)

I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, "Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots," Opt. Lett. 35, 1079-1081 (2010).
[CrossRef] [PubMed]

Phys. Rev. B (5)

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007).
[CrossRef]

A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Z. Lin, and J. Vučković, "Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities," Phys. Rev. B 81, 035301 (2010).
[CrossRef]

J. T. Shen, and P. M. Platzman, "Properties of a one-dimensional metallo-photonic crystal," Phys. Rev. B 70, 035101 (2004).
[CrossRef]

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).

Phys. Rev. Lett. (2)

G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in nonlinear surface-plasmon polaritonic crystals," Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Physica E (1)

A. J. Nozik, "Quantum dot solar cells," Physica E 14, 115-120 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010).
[CrossRef]

Science (3)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003).
[CrossRef] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Small (1)

S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006).
[CrossRef] [PubMed]

Thin Solid Films (1)

G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008).
[CrossRef]

Other (3)

I. Schwarz, N. Livneh, and R. Rapaport, "A unified analytical model for extraordinary transmission in subwavelength metallic gratings," arXiv:1011.3713v1 (2010).

U. Woggon, Optical properties of semiconductor quantum dots. Springer tracts in modern physics (Berlin: Springer-Verlag, 1997).

R. W. Boyd, Nonlinear Optics Second Ed. (Academic Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A schematic of the experimental setup: the NSA structure depicted in the center consists of a dielectric polymer layer with NQDs (marked by red circles) on top of an Al grating. The red pulse refers to the exciting NIR pulse while the blue pulse refers to the upconversion light emitted from the NQDs. The NSA sample dimensions are given by: a -slit width, d - NSA periodicity, h - Aluminum height, H - width of NQDs-in-polymer layer. (b) The absorption (blue dashed line) and emission (full green line) spectra of the NQDs along with the spectral range of the laser excitation wavelengths (red box). (c) An energy level scheme of TPA and the resulting upconversion process. The red arrows correspond to the two photons absorbed, the black arrow corresponds to the non-radiative decay to the first exitonic transition and the blue arrow is the induced upconverted photon.

Fig. 2
Fig. 2

A logarithmic scale of IUC at an excitation wavelength of 1505nm. The upconversion due to TPA is evident as the slope ≃ 2, indicating that IUCI2.

Fig. 3
Fig. 3

(a) Enhancement measurement with an excitation at 1500nm in TM polarization. The dashed blue curve corresponds to IUC from the investigated NSA sample while the green curve corresponds to the reference sample. (b) γ exp 2 as a function of the laser peak power showing that γ exp 2 is power independent.

Fig. 4
Fig. 4

The measured enhancement ( γ exp 2) for (a) TM polarization and (b) TE polarization is shown by the green dots as a function of the excitation wavelength (with a green dashed line as a guide to the eye). The transmission spectra from the respective NSA is shown by the blue curves. The red circles present the wavelengths used for the calculations in Fig. 5.

Fig. 5
Fig. 5

(a) and (c) - A calculated (green curves) and experimental (blue curves) transmission spectra for TE and TM polarizations, respectively. (b) and (d) - Calculated near-field intensities for the wavelengths indicated in Fig. 4 by red circles for TE and TM polarizations respectively. The borders between the different layers of the unit cell are indicated by the white lines and the dashed lines represent the location of the slit.

Fig. 6
Fig. 6

γcalc as a function of the excitation wavelength. The green curve corresponds to the calculated average enhancement in TE polarization showing a very narrow peak (∼ 3nm wide) at 1466nm. The dashed blue curve corresponds to TM polarization where the magnitude is much lower than in TE polarization (peak value of ∼ 1.8 at 1505nm) with a width larger than 50nm.

Fig. 7
Fig. 7

The experimental (blue dots) and the calculated (green squares) enhancement factor as a function of the excitation wavelength (the dashed lines are a guide to the eye) for (a) -TE polarization, (b) - TM polarization.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ ( λ , I ) = σ 0 ( λ ) + σ ( 2 ) ( λ ) I
I U C N N Q D = σ ( 2 ) I 2 h ¯ ω
γ calc ( λ ) = 1 ɛ P F C B u n i t c e l l I ( r , λ ) d r ¯ u n i t c e l l d r ¯
γ a v g = γ c a l c ( λ ) P ( λ ) d λ P ( λ ) d λ ,

Metrics