Abstract

Cancerous and healthy human colon samples have been analyzed ex-vivo using a multispectral imaging Mueller polarimeter operated in the visible (from 500 to 700 nm) in a backscattering configuration with diffuse light illumination. Three samples of Liberkühn colon adenocarcinomas have been studied: common, mucinous and treated by radiochemotherapy. For each sample, several specific zones have been chosen, based on their visual staging and polarimetric responses, which have been correlated to the histology of the corresponding cuts. The most relevant polarimetric images are those quantifying the depolarization for incident linearly polarized light. The measured depolarization depends on several factors, namely the presence or absence of tumor, its exophytic (budding) or endophytic (penetrating) nature, its thickness (its degree of ulceration) and its level of penetration in deeper layers (submucosa, muscularis externa and serosa). The cellular density, the concentration of stroma, the presence or absence of mucus and the light penetration depth, which increases with wavelength, are also relevant parameters. Our data indicate that the tissues with the lowest and highest depolarizing powers are respectively mucus-free tumoral tissue with high cellular density and healthy serosa, while healthy submucosa, muscularis externa as well as mucinous tumor probably feature intermediate values. Moreover, the specimen coming from a patient treated successfully with radiochemotherapy exhibited a uniform polarimetric response typical of healthy tissue even in the initially pathological zone. These results demonstrate that multi-spectral Mueller imaging can provide useful contrasts to quickly stage human colon cancer ex-vivo and to distinguish between different histological variants of tumor.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
    [PubMed]
  2. B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006).
    [CrossRef] [PubMed]
  3. Yu. Lo and T. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259(1), 40–48 (2006).
    [CrossRef]
  4. X. Guo, M. F. G. Wood, and I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46(20), 4491–4500 (2007).
    [CrossRef] [PubMed]
  5. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-1-13-441 .
  6. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999).
    [CrossRef] [PubMed]
  7. S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008).
  8. M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).
  9. M. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).
  10. J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
    [CrossRef] [PubMed]
  11. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000).
    [CrossRef] [PubMed]
  12. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
    [CrossRef] [PubMed]
  13. F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42(16), 3290–3296 (2003).
    [CrossRef] [PubMed]
  14. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4420 .
    [CrossRef] [PubMed]
  15. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
    [CrossRef] [PubMed]
  16. R. Ossikovski, C. Fallet, A. Pierangelo, and A. De Martino, “Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices,” Opt. Lett. 34(7), 974–976 (2009).
    [CrossRef] [PubMed]
  17. C. Fallet, A. Pierangelo, R. Ossikovski, and A. De Martino, “Experimental validation of the symmetric decomposition of Mueller matrices,” Opt. Express 18(2), 831–842 (2010).
    [CrossRef] [PubMed]
  18. D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
    [CrossRef] [PubMed]
  19. H. J. Thomson, A. Busuttil, M. A. Eastwood, A. N. Smith, and R. A. Elton, “The submucosa of the human colon,” J. Ultrastruct. Mol. Struct. Res. 96(1-3), 22–30 (1986).
    [CrossRef] [PubMed]
  20. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
    [CrossRef] [PubMed]
  21. S. A. Skinner and P. E. O’Brien, “The microvascular structure of the normal colon in rats and humans,” J. Surg. Res. 61(2), 482–490 (1996).
    [CrossRef] [PubMed]

2010 (2)

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

C. Fallet, A. Pierangelo, R. Ossikovski, and A. De Martino, “Experimental validation of the symmetric decomposition of Mueller matrices,” Opt. Express 18(2), 831–842 (2010).
[CrossRef] [PubMed]

2009 (2)

R. Ossikovski, C. Fallet, A. Pierangelo, and A. De Martino, “Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices,” Opt. Lett. 34(7), 974–976 (2009).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

2008 (1)

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008).

2007 (1)

X. Guo, M. F. G. Wood, and I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46(20), 4491–4500 (2007).
[CrossRef] [PubMed]

2006 (2)

B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006).
[CrossRef] [PubMed]

Yu. Lo and T. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259(1), 40–48 (2006).
[CrossRef]

2005 (3)

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[PubMed]

D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[CrossRef] [PubMed]

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4420 .
[CrossRef] [PubMed]

2003 (1)

F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42(16), 3290–3296 (2003).
[CrossRef] [PubMed]

2002 (2)

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[CrossRef] [PubMed]

2001 (1)

M. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).

2000 (2)

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).

S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000).
[CrossRef] [PubMed]

1999 (1)

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999).
[CrossRef] [PubMed]

1996 (1)

S. A. Skinner and P. E. O’Brien, “The microvascular structure of the normal colon in rats and humans,” J. Surg. Res. 61(2), 482–490 (1996).
[CrossRef] [PubMed]

1986 (1)

H. J. Thomson, A. Busuttil, M. A. Eastwood, A. N. Smith, and R. A. Elton, “The submucosa of the human colon,” J. Ultrastruct. Mol. Struct. Res. 96(1-3), 22–30 (1986).
[CrossRef] [PubMed]

Antonelli, M. R.

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Anumula, H.

B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006).
[CrossRef] [PubMed]

Bartel, S.

S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000).
[CrossRef] [PubMed]

Benali, A.

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Bocklage, T. J.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

Burke, P.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).

Busuttil, A.

H. J. Thomson, A. Busuttil, M. A. Eastwood, A. N. Smith, and R. A. Elton, “The submucosa of the human colon,” J. Ultrastruct. Mol. Struct. Res. 96(1-3), 22–30 (1986).
[CrossRef] [PubMed]

Cameron, B. D.

B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006).
[CrossRef] [PubMed]

Claridge, E.

D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[CrossRef] [PubMed]

De Martino, A.

C. Fallet, A. Pierangelo, R. Ossikovski, and A. De Martino, “Experimental validation of the symmetric decomposition of Mueller matrices,” Opt. Express 18(2), 831–842 (2010).
[CrossRef] [PubMed]

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

R. Ossikovski, C. Fallet, A. Pierangelo, and A. De Martino, “Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices,” Opt. Lett. 34(7), 974–976 (2009).
[CrossRef] [PubMed]

Dorin, M. H.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

Eastwood, M. A.

H. J. Thomson, A. Busuttil, M. A. Eastwood, A. N. Smith, and R. A. Elton, “The submucosa of the human colon,” J. Ultrastruct. Mol. Struct. Res. 96(1-3), 22–30 (1986).
[CrossRef] [PubMed]

Elton, R. A.

H. J. Thomson, A. Busuttil, M. A. Eastwood, A. N. Smith, and R. A. Elton, “The submucosa of the human colon,” J. Ultrastruct. Mol. Struct. Res. 96(1-3), 22–30 (1986).
[CrossRef] [PubMed]

Fallet, C.

C. Fallet, A. Pierangelo, R. Ossikovski, and A. De Martino, “Experimental validation of the symmetric decomposition of Mueller matrices,” Opt. Express 18(2), 831–842 (2010).
[CrossRef] [PubMed]

R. Ossikovski, C. Fallet, A. Pierangelo, and A. De Martino, “Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices,” Opt. Lett. 34(7), 974–976 (2009).
[CrossRef] [PubMed]

Gayet, B.

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Greene, H. M.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

Gu, H.-M.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[PubMed]

Guo, X.

X. Guo, M. F. G. Wood, and I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46(20), 4491–4500 (2007).
[CrossRef] [PubMed]

Hidovic-Rowe, D.

D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[CrossRef] [PubMed]

Hielscher, A. H.

S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000).
[CrossRef] [PubMed]

Hillman, L. W.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).

Isenhath, S.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008).

Jacques, S. L.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008).

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4420 .
[CrossRef] [PubMed]

Jaillon, F.

F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42(16), 3290–3296 (2003).
[CrossRef] [PubMed]

Jin, Y.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[PubMed]

Lee, K.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008).

Lo, Yu.

Yu. Lo and T. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259(1), 40–48 (2006).
[CrossRef]

Lompado, A.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).

Lu, J.-J.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[PubMed]

Maitland, D. J.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[CrossRef] [PubMed]

Mourant, J. R.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

Novikova, T.

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

O’Brien, P. E.

S. A. Skinner and P. E. O’Brien, “The microvascular structure of the normal colon in rats and humans,” J. Surg. Res. 61(2), 482–490 (1996).
[CrossRef] [PubMed]

Ossikovski, R.

C. Fallet, A. Pierangelo, R. Ossikovski, and A. De Martino, “Experimental validation of the symmetric decomposition of Mueller matrices,” Opt. Express 18(2), 831–842 (2010).
[CrossRef] [PubMed]

R. Ossikovski, C. Fallet, A. Pierangelo, and A. De Martino, “Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices,” Opt. Lett. 34(7), 974–976 (2009).
[CrossRef] [PubMed]

Pierangelo, A.

C. Fallet, A. Pierangelo, R. Ossikovski, and A. De Martino, “Experimental validation of the symmetric decomposition of Mueller matrices,” Opt. Express 18(2), 831–842 (2010).
[CrossRef] [PubMed]

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

R. Ossikovski, C. Fallet, A. Pierangelo, and A. De Martino, “Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices,” Opt. Lett. 34(7), 974–976 (2009).
[CrossRef] [PubMed]

Powers, T. M.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

Prahl, S. A.

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4420 .
[CrossRef] [PubMed]

Ramella-Roman, J. C.

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4420 .
[CrossRef] [PubMed]

Saint-Jalmes, H.

F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42(16), 3290–3296 (2003).
[CrossRef] [PubMed]

Samatham, R.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008).

Sankaran, V.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[CrossRef] [PubMed]

Skinner, S. A.

S. A. Skinner and P. E. O’Brien, “The microvascular structure of the normal colon in rats and humans,” J. Surg. Res. 61(2), 482–490 (1996).
[CrossRef] [PubMed]

Smith, A. N.

H. J. Thomson, A. Busuttil, M. A. Eastwood, A. N. Smith, and R. A. Elton, “The submucosa of the human colon,” J. Ultrastruct. Mol. Struct. Res. 96(1-3), 22–30 (1986).
[CrossRef] [PubMed]

Smith, H. O.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

Smith, M.

M. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).

Smith, M. H.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).

Tanner, E.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).

Thomson, H. J.

H. J. Thomson, A. Busuttil, M. A. Eastwood, A. N. Smith, and R. A. Elton, “The submucosa of the human colon,” J. Ultrastruct. Mol. Struct. Res. 96(1-3), 22–30 (1986).
[CrossRef] [PubMed]

Validire, P.

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Vitkin, I. A.

X. Guo, M. F. G. Wood, and I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46(20), 4491–4500 (2007).
[CrossRef] [PubMed]

Walsh, J. T.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[CrossRef] [PubMed]

Wang, L. V.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999).
[CrossRef] [PubMed]

Wang, X.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

Waxman, A. G.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

Wei, H.-J.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[PubMed]

Wood, M. F. G.

X. Guo, M. F. G. Wood, and I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46(20), 4491–4500 (2007).
[CrossRef] [PubMed]

Wu, G.-Y.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[PubMed]

Xing, D.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[PubMed]

Yao, G.

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999).
[CrossRef] [PubMed]

Yu, T.

Yu. Lo and T. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259(1), 40–48 (2006).
[CrossRef]

Zsemlye, M. M.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

Appl. Opt. (4)

X. Guo, M. F. G. Wood, and I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46(20), 4491–4500 (2007).
[CrossRef] [PubMed]

F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42(16), 3290–3296 (2003).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000).
[CrossRef] [PubMed]

Diabetes Technol. Ther. (1)

B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[CrossRef] [PubMed]

J. Surg. Res. (1)

S. A. Skinner and P. E. O’Brien, “The microvascular structure of the normal colon in rats and humans,” J. Surg. Res. 61(2), 482–490 (1996).
[CrossRef] [PubMed]

J. Ultrastruct. Mol. Struct. Res. (1)

H. J. Thomson, A. Busuttil, M. A. Eastwood, A. N. Smith, and R. A. Elton, “The submucosa of the human colon,” J. Ultrastruct. Mol. Struct. Res. 96(1-3), 22–30 (1986).
[CrossRef] [PubMed]

Opt. Commun. (1)

Yu. Lo and T. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259(1), 40–48 (2006).
[CrossRef]

Opt. Express (3)

C. Fallet, A. Pierangelo, R. Ossikovski, and A. De Martino, “Experimental validation of the symmetric decomposition of Mueller matrices,” Opt. Express 18(2), 831–842 (2010).
[CrossRef] [PubMed]

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4420 .
[CrossRef] [PubMed]

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

R. Ossikovski, C. Fallet, A. Pierangelo, and A. De Martino, “Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices,” Opt. Lett. 34(7), 974–976 (2009).
[CrossRef] [PubMed]

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[CrossRef] [PubMed]

Proc. SPIE (3)

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008).

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).

M. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).

World J. Gastroenterol. (1)

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[PubMed]

Other (1)

A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-1-13-441 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics