Abstract

We have investigated the highly nonlinear terahertz (THz) light-matter interaction in single-walled carbon nanotubes (SWNTs). The high-peak THz electric-field (∼0.7 MV/cm) and the low effective mass of carriers result in their ponderomotive energy exceeding the bandgap energy of semiconducting SWNTs. Under such an intense THz pulse irradiation, the interband excitation that results in the generation of excitons occurs, although the THz photon energy (∼4 meV) is much smaller than the gap energy of SWNTs (∼1 eV). The ultrafast dynamics of this exciton generation process is investigated by THz pump and optical probe spectroscopy. The exciton generation mechanism is described by impact excitation process induced by the strong THz E-field. Such intense THz pulse excitation provides a powerful tool to study nonlinear terahertz optics in non-perturbative regime as well as nonlinear transport phenomena in solids with ultrafast temporal resolution.

© 2011 OSA

Full Article  |  PDF Article

Corrections

Shinichi Watanabe, Nobutsugu Minami, and Ryo Shimano, "Intense terahertz pulse induced exciton generation in carbon nanotubes: erratum," Opt. Express 19, 15388-15388 (2011)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-19-16-15388

References

  • View by:
  • |
  • |
  • |

  1. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  2. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
    [CrossRef] [PubMed]
  3. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
    [CrossRef]
  4. R. R. Jones, D. You, and P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
    [CrossRef] [PubMed]
  5. A. H. Chin, J. M. Bakker, and J. Kono, “Ultrafast electroabsorption at the transition between classical and quantum response,” Phys. Rev. Lett. 85, 3293–3296 (2000).
    [CrossRef] [PubMed]
  6. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210–1212 (2000).
    [CrossRef]
  7. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008).
    [CrossRef]
  8. M. Jewariya, M. Nagai, and K. Tanaka, “Enhancement of terahertz wave generation by cascaded x(2) processes in LiNbO3,” J. Opt. Soc. Am. B 26, A101–A106 (2009).
    [CrossRef]
  9. P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Nonlinear terahertz response of n-type GaAs,” Phys. Rev. Lett. 96, 187402 (2006).
    [CrossRef] [PubMed]
  10. H. Wen, M. Wiczer, and A. M. Lindenberg, “Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses,” Phys. Rev. B 78, 125203 (2008).
    [CrossRef]
  11. J. L. Liu and X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103, 235002 (2009).
    [CrossRef]
  12. S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
    [CrossRef]
  13. A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
    [CrossRef] [PubMed]
  14. F. H. Su, F. Blanchard, G. Sharma, L. Razzari, A. Ayesheshim, T. L. Cocker, L. V. Titova, T. Ozaki, J. C. Kieffer, R. Morandotti, M. Reid, and F. A. Hegmann, “Terahertz pulse induced intervalley scattering in photoexcited GaAs,” Opt. Express 17, 9620–9629 (2009).
    [CrossRef] [PubMed]
  15. M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump–terahertz probe spectroscopy,” Phys. Rev. B 79, 161201 (2009).
    [CrossRef]
  16. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
    [PubMed]
  17. B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, “Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts,” Chem. Phys. Lett. 317, 497–503 (2000).
    [CrossRef]
  18. S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst,” J. Am. Chem. Soc. 125, 11186–11187 (2003).
    [CrossRef]
  19. N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
    [CrossRef]
  20. Y. Kim, N. Minami, and S. Kazaoui, “Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films,” Appl. Phys. Lett. 86, 073103 (2005).
    [CrossRef]
  21. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
    [CrossRef] [PubMed]
  22. Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze, “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D Appl. Phys. 22, 682–686 (1989).
    [CrossRef]
  23. T. Ogawa, S. Watanabe, N. Minami, and R. Shimano, “Room temperature terahertz electro-optic modulation by excitons in carbon nanotubes,” Appl. Phys. Lett. 97, 041111 (2010).
    [CrossRef]
  24. T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, “Localized and delocalized electronic states in single-wall carbon nanotubes,” Phys. Rev. Lett. 80, 4729–4732 (1998).
    [CrossRef]
  25. S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, “Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films,” Phys. Rev. B 62, 1643–1646 (2000).
    [CrossRef]
  26. R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot,” Nano Lett. 3, 1235–1238 (2003).
    [CrossRef]
  27. R. Shimano, T. Ogawa, and S. Watanabe, “Intense terahertz field-Induced electroabsorption in carbon nanotubes,” Proceedings of The 35th International Conference on Infrared, Millimeter and THz Waves (IRMMW-THz 2010).
  28. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
    [CrossRef]
  29. L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, “Size and mobility of excitons in (6, 5) carbon nanotubes,” Nat. Phys 5, 54–58 (2009).
    [CrossRef]
  30. Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, “Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy,” J. Chem. Phys. 120, 3368–3373 (2004).
    [CrossRef] [PubMed]
  31. J. Wang, M. W. Graham, Y. Ma, G. R. Fleming, and R. A. Kaindl, “Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 177401 (2010).
    [CrossRef] [PubMed]
  32. T. G. Pedersen, K. Pedersen, H. D. Cornean, and P. Duclos, “Stability and signatures of biexcitons in carbon nanotubes,” Nano Lett. 5, 291–294 (2005).
    [CrossRef] [PubMed]
  33. M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, “Carbon nanotube photo- and electroluminescence in longitudinal electric fields,” ACS Nano 3, 3744–3748 (2009).
    [CrossRef] [PubMed]
  34. D. Jena, T. Fang, Q. Zhang, and H. Xing, “Zener tunneling in semiconducting nanotube and graphene nanoribbon p - n junctions,” Appl. Phys. Lett. 93, 112106 (2008).
    [CrossRef]
  35. J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310, 1171–1174 (2005).
    [CrossRef] [PubMed]
  36. A. Liao, Y. Zhao, and E. Pop, “Avalanche-induced current enhancement in semiconducting carbon nanotubes,” Phys. Rev. Lett. 101, 256804 (2008).
    [CrossRef] [PubMed]
  37. N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
    [CrossRef] [PubMed]
  38. V. Perebeinos and P. Avouris, “Impact excitation by hot carriers in carbon nanotubes,” Phys. Rev. B 74, 121410 (2006).
    [CrossRef]
  39. S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, and Y. Achiba, “Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy,” Phys. Rev. B 60, 13339–13342 (1999).
    [CrossRef]
  40. K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
    [CrossRef]
  41. V. Perebeinos and P. Avouris, “Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes,” Nano Lett. 7, 609–613 (2007).
    [CrossRef] [PubMed]

2010 (3)

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
[CrossRef] [PubMed]

T. Ogawa, S. Watanabe, N. Minami, and R. Shimano, “Room temperature terahertz electro-optic modulation by excitons in carbon nanotubes,” Appl. Phys. Lett. 97, 041111 (2010).
[CrossRef]

J. Wang, M. W. Graham, Y. Ma, G. R. Fleming, and R. A. Kaindl, “Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 177401 (2010).
[CrossRef] [PubMed]

2009 (8)

M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, “Carbon nanotube photo- and electroluminescence in longitudinal electric fields,” ACS Nano 3, 3744–3748 (2009).
[CrossRef] [PubMed]

L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, “Size and mobility of excitons in (6, 5) carbon nanotubes,” Nat. Phys 5, 54–58 (2009).
[CrossRef]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

M. Jewariya, M. Nagai, and K. Tanaka, “Enhancement of terahertz wave generation by cascaded x(2) processes in LiNbO3,” J. Opt. Soc. Am. B 26, A101–A106 (2009).
[CrossRef]

J. L. Liu and X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103, 235002 (2009).
[CrossRef]

F. H. Su, F. Blanchard, G. Sharma, L. Razzari, A. Ayesheshim, T. L. Cocker, L. V. Titova, T. Ozaki, J. C. Kieffer, R. Morandotti, M. Reid, and F. A. Hegmann, “Terahertz pulse induced intervalley scattering in photoexcited GaAs,” Opt. Express 17, 9620–9629 (2009).
[CrossRef] [PubMed]

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump–terahertz probe spectroscopy,” Phys. Rev. B 79, 161201 (2009).
[CrossRef]

N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[CrossRef] [PubMed]

2008 (6)

A. Liao, Y. Zhao, and E. Pop, “Avalanche-induced current enhancement in semiconducting carbon nanotubes,” Phys. Rev. Lett. 101, 256804 (2008).
[CrossRef] [PubMed]

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008).
[CrossRef]

H. Wen, M. Wiczer, and A. M. Lindenberg, “Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses,” Phys. Rev. B 78, 125203 (2008).
[CrossRef]

D. Jena, T. Fang, Q. Zhang, and H. Xing, “Zener tunneling in semiconducting nanotube and graphene nanoribbon p - n junctions,” Appl. Phys. Lett. 93, 112106 (2008).
[CrossRef]

2007 (1)

V. Perebeinos and P. Avouris, “Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes,” Nano Lett. 7, 609–613 (2007).
[CrossRef] [PubMed]

2006 (3)

V. Perebeinos and P. Avouris, “Impact excitation by hot carriers in carbon nanotubes,” Phys. Rev. B 74, 121410 (2006).
[CrossRef]

N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Nonlinear terahertz response of n-type GaAs,” Phys. Rev. Lett. 96, 187402 (2006).
[CrossRef] [PubMed]

2005 (3)

Y. Kim, N. Minami, and S. Kazaoui, “Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films,” Appl. Phys. Lett. 86, 073103 (2005).
[CrossRef]

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310, 1171–1174 (2005).
[CrossRef] [PubMed]

T. G. Pedersen, K. Pedersen, H. D. Cornean, and P. Duclos, “Stability and signatures of biexcitons in carbon nanotubes,” Nano Lett. 5, 291–294 (2005).
[CrossRef] [PubMed]

2004 (1)

Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, “Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy,” J. Chem. Phys. 120, 3368–3373 (2004).
[CrossRef] [PubMed]

2003 (2)

R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot,” Nano Lett. 3, 1235–1238 (2003).
[CrossRef]

S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst,” J. Am. Chem. Soc. 125, 11186–11187 (2003).
[CrossRef]

2002 (1)

2000 (4)

B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, “Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts,” Chem. Phys. Lett. 317, 497–503 (2000).
[CrossRef]

A. H. Chin, J. M. Bakker, and J. Kono, “Ultrafast electroabsorption at the transition between classical and quantum response,” Phys. Rev. Lett. 85, 3293–3296 (2000).
[CrossRef] [PubMed]

D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210–1212 (2000).
[CrossRef]

S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, “Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films,” Phys. Rev. B 62, 1643–1646 (2000).
[CrossRef]

1999 (1)

S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, and Y. Achiba, “Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy,” Phys. Rev. B 60, 13339–13342 (1999).
[CrossRef]

1998 (2)

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, “Localized and delocalized electronic states in single-wall carbon nanotubes,” Phys. Rev. Lett. 80, 4729–4732 (1998).
[CrossRef]

1993 (2)

R. R. Jones, D. You, and P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
[CrossRef] [PubMed]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[CrossRef] [PubMed]

1989 (1)

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze, “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D Appl. Phys. 22, 682–686 (1989).
[CrossRef]

1985 (1)

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
[CrossRef]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Achiba, Y.

S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, “Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films,” Phys. Rev. B 62, 1643–1646 (2000).
[CrossRef]

S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, and Y. Achiba, “Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy,” Phys. Rev. B 60, 13339–13342 (1999).
[CrossRef]

Akiyama, H.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

Allen, S. J.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

Almasi, G.

Almási, G.

Alvarez, W. E.

B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, “Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts,” Chem. Phys. Lett. 317, 497–503 (2000).
[CrossRef]

Aoki, K.

S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, “Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films,” Phys. Rev. B 62, 1643–1646 (2000).
[CrossRef]

Avouris, P.

M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, “Carbon nanotube photo- and electroluminescence in longitudinal electric fields,” ACS Nano 3, 3744–3748 (2009).
[CrossRef] [PubMed]

V. Perebeinos and P. Avouris, “Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes,” Nano Lett. 7, 609–613 (2007).
[CrossRef] [PubMed]

V. Perebeinos and P. Avouris, “Impact excitation by hot carriers in carbon nanotubes,” Phys. Rev. B 74, 121410 (2006).
[CrossRef]

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310, 1171–1174 (2005).
[CrossRef] [PubMed]

Ayesheshim, A.

Bachilo, S. M.

Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, “Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy,” J. Chem. Phys. 120, 3368–3373 (2004).
[CrossRef] [PubMed]

R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot,” Nano Lett. 3, 1235–1238 (2003).
[CrossRef]

S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst,” J. Am. Chem. Soc. 125, 11186–11187 (2003).
[CrossRef]

Bakker, J. M.

A. H. Chin, J. M. Bakker, and J. Kono, “Ultrafast electroabsorption at the transition between classical and quantum response,” Phys. Rev. Lett. 85, 3293–3296 (2000).
[CrossRef] [PubMed]

Balzano, L.

S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst,” J. Am. Chem. Soc. 125, 11186–11187 (2003).
[CrossRef]

Bartal, B.

Berozashvili, Y.

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze, “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D Appl. Phys. 22, 682–686 (1989).
[CrossRef]

Birnir, B.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

Blanchard, F.

Bol, A. A.

M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, “Carbon nanotube photo- and electroluminescence in longitudinal electric fields,” ACS Nano 3, 3744–3748 (2009).
[CrossRef] [PubMed]

Bosnick, K.

N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[CrossRef] [PubMed]

Bucksbaum, P. H.

R. R. Jones, D. You, and P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
[CrossRef] [PubMed]

Chemla, D. S.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
[CrossRef]

Chen, J.

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310, 1171–1174 (2005).
[CrossRef] [PubMed]

Chin, A. H.

A. H. Chin, J. M. Bakker, and J. Kono, “Ultrafast electroabsorption at the transition between classical and quantum response,” Phys. Rev. Lett. 85, 3293–3296 (2000).
[CrossRef] [PubMed]

Chirakadze, A.

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze, “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D Appl. Phys. 22, 682–686 (1989).
[CrossRef]

Cocker, T. L.

Cook, D. J.

Corkum, P. B.

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[CrossRef] [PubMed]

Cornean, H. D.

T. G. Pedersen, K. Pedersen, H. D. Cornean, and P. Duclos, “Stability and signatures of biexcitons in carbon nanotubes,” Nano Lett. 5, 291–294 (2005).
[CrossRef] [PubMed]

Crochet, J.

L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, “Size and mobility of excitons in (6, 5) carbon nanotubes,” Nat. Phys 5, 54–58 (2009).
[CrossRef]

Duclos, P.

T. G. Pedersen, K. Pedersen, H. D. Cornean, and P. Duclos, “Stability and signatures of biexcitons in carbon nanotubes,” Nano Lett. 5, 291–294 (2005).
[CrossRef] [PubMed]

Elsaesser, T.

P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Nonlinear terahertz response of n-type GaAs,” Phys. Rev. Lett. 96, 187402 (2006).
[CrossRef] [PubMed]

Fang, T.

D. Jena, T. Fang, Q. Zhang, and H. Xing, “Zener tunneling in semiconducting nanotube and graphene nanoribbon p - n junctions,” Appl. Phys. Lett. 93, 112106 (2008).
[CrossRef]

Fink, J.

T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, “Localized and delocalized electronic states in single-wall carbon nanotubes,” Phys. Rev. Lett. 80, 4729–4732 (1998).
[CrossRef]

Fleming, G. R.

J. Wang, M. W. Graham, Y. Ma, G. R. Fleming, and R. A. Kaindl, “Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 177401 (2010).
[CrossRef] [PubMed]

Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, “Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy,” J. Chem. Phys. 120, 3368–3373 (2004).
[CrossRef] [PubMed]

Freitag, M.

M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, “Carbon nanotube photo- and electroluminescence in longitudinal electric fields,” ACS Nano 3, 3744–3748 (2009).
[CrossRef] [PubMed]

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310, 1171–1174 (2005).
[CrossRef] [PubMed]

Fu, Q.

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310, 1171–1174 (2005).
[CrossRef] [PubMed]

Fülöp, J. A.

Gaal, P.

P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Nonlinear terahertz response of n-type GaAs,” Phys. Rev. Lett. 96, 187402 (2006).
[CrossRef] [PubMed]

Gabor, N. M.

N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[CrossRef] [PubMed]

Golden, M. S.

T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, “Localized and delocalized electronic states in single-wall carbon nanotubes,” Phys. Rev. Lett. 80, 4729–4732 (1998).
[CrossRef]

Graham, M. W.

J. Wang, M. W. Graham, Y. Ma, G. R. Fleming, and R. A. Kaindl, “Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 177401 (2010).
[CrossRef] [PubMed]

Harwell, J. H.

B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, “Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts,” Chem. Phys. Lett. 317, 497–503 (2000).
[CrossRef]

Hebling, J.

Hegmann, F. A.

Herrera, J. E.

S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst,” J. Am. Chem. Soc. 125, 11186–11187 (2003).
[CrossRef]

Hertel, T.

L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, “Size and mobility of excitons in (6, 5) carbon nanotubes,” Nat. Phys 5, 54–58 (2009).
[CrossRef]

Hey, R.

P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Nonlinear terahertz response of n-type GaAs,” Phys. Rev. Lett. 96, 187402 (2006).
[CrossRef] [PubMed]

Hochstrasser, R. M.

Hoffmann, M. C.

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump–terahertz probe spectroscopy,” Phys. Rev. B 79, 161201 (2009).
[CrossRef]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008).
[CrossRef]

Hoseinkhani, S.

L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, “Size and mobility of excitons in (6, 5) carbon nanotubes,” Nat. Phys 5, 54–58 (2009).
[CrossRef]

Houard, A.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

Huber, R.

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

Hwang, H. Y.

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump–terahertz probe spectroscopy,” Phys. Rev. B 79, 161201 (2009).
[CrossRef]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

Jacquemin, R.

S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, and Y. Achiba, “Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy,” Phys. Rev. B 60, 13339–13342 (1999).
[CrossRef]

Jauho, A. P.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

Jena, D.

D. Jena, T. Fang, Q. Zhang, and H. Xing, “Zener tunneling in semiconducting nanotube and graphene nanoribbon p - n junctions,” Appl. Phys. Lett. 93, 112106 (2008).
[CrossRef]

Jewariya, M.

Johnsen, K.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

Jones, R. R.

R. R. Jones, D. You, and P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
[CrossRef] [PubMed]

Kaindl, R. A.

J. Wang, M. W. Graham, Y. Ma, G. R. Fleming, and R. A. Kaindl, “Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 177401 (2010).
[CrossRef] [PubMed]

Kampfrath, T.

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

Kataura, H.

S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, “Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films,” Phys. Rev. B 62, 1643–1646 (2000).
[CrossRef]

S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, and Y. Achiba, “Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy,” Phys. Rev. B 60, 13339–13342 (1999).
[CrossRef]

Kazaoui, S.

N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Y. Kim, N. Minami, and S. Kazaoui, “Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films,” Appl. Phys. Lett. 86, 073103 (2005).
[CrossRef]

S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, “Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films,” Phys. Rev. B 62, 1643–1646 (2000).
[CrossRef]

S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, and Y. Achiba, “Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy,” Phys. Rev. B 60, 13339–13342 (1999).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Kieffer, J. C.

Kim, Y.

N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Y. Kim, N. Minami, and S. Kazaoui, “Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films,” Appl. Phys. Lett. 86, 073103 (2005).
[CrossRef]

Kira, M.

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

Kitiyanan, B.

B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, “Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts,” Chem. Phys. Lett. 317, 497–503 (2000).
[CrossRef]

Knupfer, M.

T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, “Localized and delocalized electronic states in single-wall carbon nanotubes,” Phys. Rev. Lett. 80, 4729–4732 (1998).
[CrossRef]

Koch, S. W.

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

Kono, J.

A. H. Chin, J. M. Bakker, and J. Kono, “Ultrafast electroabsorption at the transition between classical and quantum response,” Phys. Rev. Lett. 85, 3293–3296 (2000).
[CrossRef] [PubMed]

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

Kozma, I.

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

Kuhl, J.

Lanzani, G.

L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, “Size and mobility of excitons in (6, 5) carbon nanotubes,” Nat. Phys 5, 54–58 (2009).
[CrossRef]

Leinß, S.

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

Leitenstorfer, A.

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

Liao, A.

A. Liao, Y. Zhao, and E. Pop, “Avalanche-induced current enhancement in semiconducting carbon nanotubes,” Phys. Rev. Lett. 101, 256804 (2008).
[CrossRef] [PubMed]

Lindenberg, A. M.

H. Wen, M. Wiczer, and A. M. Lindenberg, “Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses,” Phys. Rev. B 78, 125203 (2008).
[CrossRef]

Liu, J.

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310, 1171–1174 (2005).
[CrossRef] [PubMed]

Liu, J. L.

J. L. Liu and X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103, 235002 (2009).
[CrossRef]

Liu, Y.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

Lüer, L.

L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, “Size and mobility of excitons in (6, 5) carbon nanotubes,” Nat. Phys 5, 54–58 (2009).
[CrossRef]

Ma, Y.

J. Wang, M. W. Graham, Y. Ma, G. R. Fleming, and R. A. Kaindl, “Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 177401 (2010).
[CrossRef] [PubMed]

Ma, Y.-Z.

Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, “Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy,” J. Chem. Phys. 120, 3368–3373 (2004).
[CrossRef] [PubMed]

Machavariani, S.

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze, “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D Appl. Phys. 22, 682–686 (1989).
[CrossRef]

McEuen, P. L.

N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[CrossRef] [PubMed]

Miller, D. A. B.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
[CrossRef]

Minami, N.

T. Ogawa, S. Watanabe, N. Minami, and R. Shimano, “Room temperature terahertz electro-optic modulation by excitons in carbon nanotubes,” Appl. Phys. Lett. 97, 041111 (2010).
[CrossRef]

N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Y. Kim, N. Minami, and S. Kazaoui, “Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films,” Appl. Phys. Lett. 86, 073103 (2005).
[CrossRef]

S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, “Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films,” Phys. Rev. B 62, 1643–1646 (2000).
[CrossRef]

S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, and Y. Achiba, “Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy,” Phys. Rev. B 60, 13339–13342 (1999).
[CrossRef]

Miyashita, K.

N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Morandotti, R.

Mysyrowicz, A.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

Nagai, M.

Nalini, B.

N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Natsvlishvili, A.

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze, “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D Appl. Phys. 22, 682–686 (1989).
[CrossRef]

Naumov, A.

M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, “Carbon nanotube photo- and electroluminescence in longitudinal electric fields,” ACS Nano 3, 3744–3748 (2009).
[CrossRef] [PubMed]

Nelson, K. A.

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump–terahertz probe spectroscopy,” Phys. Rev. B 79, 161201 (2009).
[CrossRef]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008).
[CrossRef]

Noda, T.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

Nordstrom, K. B.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

Ogawa, T.

T. Ogawa, S. Watanabe, N. Minami, and R. Shimano, “Room temperature terahertz electro-optic modulation by excitons in carbon nanotubes,” Appl. Phys. Lett. 97, 041111 (2010).
[CrossRef]

R. Shimano, T. Ogawa, and S. Watanabe, “Intense terahertz field-Induced electroabsorption in carbon nanotubes,” Proceedings of The 35th International Conference on Infrared, Millimeter and THz Waves (IRMMW-THz 2010).

Ozaki, T.

Pálfalvi, L.

Park, J.

N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[CrossRef] [PubMed]

Pedersen, K.

T. G. Pedersen, K. Pedersen, H. D. Cornean, and P. Duclos, “Stability and signatures of biexcitons in carbon nanotubes,” Nano Lett. 5, 291–294 (2005).
[CrossRef] [PubMed]

Pedersen, T. G.

T. G. Pedersen, K. Pedersen, H. D. Cornean, and P. Duclos, “Stability and signatures of biexcitons in carbon nanotubes,” Nano Lett. 5, 291–294 (2005).
[CrossRef] [PubMed]

Perebeinos, V.

M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, “Carbon nanotube photo- and electroluminescence in longitudinal electric fields,” ACS Nano 3, 3744–3748 (2009).
[CrossRef] [PubMed]

V. Perebeinos and P. Avouris, “Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes,” Nano Lett. 7, 609–613 (2007).
[CrossRef] [PubMed]

V. Perebeinos and P. Avouris, “Impact excitation by hot carriers in carbon nanotubes,” Phys. Rev. B 74, 121410 (2006).
[CrossRef]

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310, 1171–1174 (2005).
[CrossRef] [PubMed]

Pichler, T.

T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, “Localized and delocalized electronic states in single-wall carbon nanotubes,” Phys. Rev. Lett. 80, 4729–4732 (1998).
[CrossRef]

Ploog, K. H.

P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Nonlinear terahertz response of n-type GaAs,” Phys. Rev. Lett. 96, 187402 (2006).
[CrossRef] [PubMed]

Polli, D.

L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, “Size and mobility of excitons in (6, 5) carbon nanotubes,” Nat. Phys 5, 54–58 (2009).
[CrossRef]

Pompeo, F.

S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst,” J. Am. Chem. Soc. 125, 11186–11187 (2003).
[CrossRef]

Pop, E.

A. Liao, Y. Zhao, and E. Pop, “Avalanche-induced current enhancement in semiconducting carbon nanotubes,” Phys. Rev. Lett. 101, 256804 (2008).
[CrossRef] [PubMed]

Prade, B.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

Razzari, L.

Reid, M.

Reimann, K.

P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Nonlinear terahertz response of n-type GaAs,” Phys. Rev. Lett. 96, 187402 (2006).
[CrossRef] [PubMed]

Resasco, D. E.

S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst,” J. Am. Chem. Soc. 125, 11186–11187 (2003).
[CrossRef]

B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, “Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts,” Chem. Phys. Lett. 317, 497–503 (2000).
[CrossRef]

Rinzler, A.

T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, “Localized and delocalized electronic states in single-wall carbon nanotubes,” Phys. Rev. Lett. 80, 4729–4732 (1998).
[CrossRef]

Sakaki, H.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

Schmitt-Rink, S.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
[CrossRef]

Sharma, G.

Shimano, R.

T. Ogawa, S. Watanabe, N. Minami, and R. Shimano, “Room temperature terahertz electro-optic modulation by excitons in carbon nanotubes,” Appl. Phys. Lett. 97, 041111 (2010).
[CrossRef]

R. Shimano, T. Ogawa, and S. Watanabe, “Intense terahertz field-Induced electroabsorption in carbon nanotubes,” Proceedings of The 35th International Conference on Infrared, Millimeter and THz Waves (IRMMW-THz 2010).

Small, J. P.

M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, “Carbon nanotube photo- and electroluminescence in longitudinal electric fields,” ACS Nano 3, 3744–3748 (2009).
[CrossRef] [PubMed]

Smalley, R. E.

Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, “Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy,” J. Chem. Phys. 120, 3368–3373 (2004).
[CrossRef] [PubMed]

T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, “Localized and delocalized electronic states in single-wall carbon nanotubes,” Phys. Rev. Lett. 80, 4729–4732 (1998).
[CrossRef]

Steiner, J. T.

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

Steiner, M.

M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, “Carbon nanotube photo- and electroluminescence in longitudinal electric fields,” ACS Nano 3, 3744–3748 (2009).
[CrossRef] [PubMed]

Stenger, J.

Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, “Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy,” J. Chem. Phys. 120, 3368–3373 (2004).
[CrossRef] [PubMed]

Su, F. H.

Tanaka, K.

Tikhonchuk, V. T.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

Titova, L. V.

Tsang, J.

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310, 1171–1174 (2005).
[CrossRef] [PubMed]

Volkmann, K. v.

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

Wang, J.

J. Wang, M. W. Graham, Y. Ma, G. R. Fleming, and R. A. Kaindl, “Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 177401 (2010).
[CrossRef] [PubMed]

Watanabe, S.

T. Ogawa, S. Watanabe, N. Minami, and R. Shimano, “Room temperature terahertz electro-optic modulation by excitons in carbon nanotubes,” Appl. Phys. Lett. 97, 041111 (2010).
[CrossRef]

R. Shimano, T. Ogawa, and S. Watanabe, “Intense terahertz field-Induced electroabsorption in carbon nanotubes,” Proceedings of The 35th International Conference on Infrared, Millimeter and THz Waves (IRMMW-THz 2010).

Weisman, R. B.

Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, “Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy,” J. Chem. Phys. 120, 3368–3373 (2004).
[CrossRef] [PubMed]

R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot,” Nano Lett. 3, 1235–1238 (2003).
[CrossRef]

S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst,” J. Am. Chem. Soc. 125, 11186–11187 (2003).
[CrossRef]

Wen, H.

H. Wen, M. Wiczer, and A. M. Lindenberg, “Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses,” Phys. Rev. B 78, 125203 (2008).
[CrossRef]

Wiczer, M.

H. Wen, M. Wiczer, and A. M. Lindenberg, “Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses,” Phys. Rev. B 78, 125203 (2008).
[CrossRef]

Woerner, M.

P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Nonlinear terahertz response of n-type GaAs,” Phys. Rev. Lett. 96, 187402 (2006).
[CrossRef] [PubMed]

Wolf, M.

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

Xing, H.

D. Jena, T. Fang, Q. Zhang, and H. Xing, “Zener tunneling in semiconducting nanotube and graphene nanoribbon p - n junctions,” Appl. Phys. Lett. 93, 112106 (2008).
[CrossRef]

Yamawaki, H.

S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, “Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films,” Phys. Rev. B 62, 1643–1646 (2000).
[CrossRef]

Yeh, K.-L.

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump–terahertz probe spectroscopy,” Phys. Rev. B 79, 161201 (2009).
[CrossRef]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008).
[CrossRef]

You, D.

R. R. Jones, D. You, and P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
[CrossRef] [PubMed]

Zhang, Q.

D. Jena, T. Fang, Q. Zhang, and H. Xing, “Zener tunneling in semiconducting nanotube and graphene nanoribbon p - n junctions,” Appl. Phys. Lett. 93, 112106 (2008).
[CrossRef]

Zhang, X. C.

J. L. Liu and X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103, 235002 (2009).
[CrossRef]

Zhao, Y.

A. Liao, Y. Zhao, and E. Pop, “Avalanche-induced current enhancement in semiconducting carbon nanotubes,” Phys. Rev. Lett. 101, 256804 (2008).
[CrossRef] [PubMed]

Zhong, Z.

N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[CrossRef] [PubMed]

Zimmermann, J.

Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, “Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy,” J. Chem. Phys. 120, 3368–3373 (2004).
[CrossRef] [PubMed]

ACS Nano (1)

M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, “Carbon nanotube photo- and electroluminescence in longitudinal electric fields,” ACS Nano 3, 3744–3748 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

D. Jena, T. Fang, Q. Zhang, and H. Xing, “Zener tunneling in semiconducting nanotube and graphene nanoribbon p - n junctions,” Appl. Phys. Lett. 93, 112106 (2008).
[CrossRef]

N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006).
[CrossRef]

Y. Kim, N. Minami, and S. Kazaoui, “Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films,” Appl. Phys. Lett. 86, 073103 (2005).
[CrossRef]

T. Ogawa, S. Watanabe, N. Minami, and R. Shimano, “Room temperature terahertz electro-optic modulation by excitons in carbon nanotubes,” Appl. Phys. Lett. 97, 041111 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, “Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts,” Chem. Phys. Lett. 317, 497–503 (2000).
[CrossRef]

J. Am. Chem. Soc. (1)

S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst,” J. Am. Chem. Soc. 125, 11186–11187 (2003).
[CrossRef]

J. Chem. Phys. (1)

Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, “Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy,” J. Chem. Phys. 120, 3368–3373 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze, “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D Appl. Phys. 22, 682–686 (1989).
[CrossRef]

Nano Lett. (3)

R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot,” Nano Lett. 3, 1235–1238 (2003).
[CrossRef]

T. G. Pedersen, K. Pedersen, H. D. Cornean, and P. Duclos, “Stability and signatures of biexcitons in carbon nanotubes,” Nano Lett. 5, 291–294 (2005).
[CrossRef] [PubMed]

V. Perebeinos and P. Avouris, “Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes,” Nano Lett. 7, 609–613 (2007).
[CrossRef] [PubMed]

Nat. Phys (1)

L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, “Size and mobility of excitons in (6, 5) carbon nanotubes,” Nat. Phys 5, 54–58 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (6)

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump–terahertz probe spectroscopy,” Phys. Rev. B 79, 161201 (2009).
[CrossRef]

H. Wen, M. Wiczer, and A. M. Lindenberg, “Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses,” Phys. Rev. B 78, 125203 (2008).
[CrossRef]

S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, “Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films,” Phys. Rev. B 62, 1643–1646 (2000).
[CrossRef]

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
[CrossRef]

V. Perebeinos and P. Avouris, “Impact excitation by hot carriers in carbon nanotubes,” Phys. Rev. B 74, 121410 (2006).
[CrossRef]

S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, and Y. Achiba, “Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy,” Phys. Rev. B 60, 13339–13342 (1999).
[CrossRef]

Phys. Rev. Lett. (11)

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Excitonic dynamical Franz-Keldysh effect,” Phys. Rev. Lett. 81, 457–460 (1998).
[CrossRef]

A. Liao, Y. Zhao, and E. Pop, “Avalanche-induced current enhancement in semiconducting carbon nanotubes,” Phys. Rev. Lett. 101, 256804 (2008).
[CrossRef] [PubMed]

J. Wang, M. W. Graham, Y. Ma, G. R. Fleming, and R. A. Kaindl, “Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 177401 (2010).
[CrossRef] [PubMed]

T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, “Localized and delocalized electronic states in single-wall carbon nanotubes,” Phys. Rev. Lett. 80, 4729–4732 (1998).
[CrossRef]

J. L. Liu and X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103, 235002 (2009).
[CrossRef]

S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
[CrossRef]

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Nonlinear terahertz response of n-type GaAs,” Phys. Rev. Lett. 96, 187402 (2006).
[CrossRef] [PubMed]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[CrossRef] [PubMed]

R. R. Jones, D. You, and P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
[CrossRef] [PubMed]

A. H. Chin, J. M. Bakker, and J. Kono, “Ultrafast electroabsorption at the transition between classical and quantum response,” Phys. Rev. Lett. 85, 3293–3296 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

Science (2)

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310, 1171–1174 (2005).
[CrossRef] [PubMed]

N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes,” Science 325, 1367–1371 (2009).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Other (1)

R. Shimano, T. Ogawa, and S. Watanabe, “Intense terahertz field-Induced electroabsorption in carbon nanotubes,” Proceedings of The 35th International Conference on Infrared, Millimeter and THz Waves (IRMMW-THz 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the TPOP experiments. (b) Temporal waveform of the pump terahertz pulse.

Fig. 2
Fig. 2

Near-infrared absorption spectrum of a SWNT/SDBS/gelatin film (solid line). Dashed line shows the fitting curve obtained by Eq. (1). The spectral components used in the fitting is also shown with the corresponding tube chirality (n, m). π-plasmon absorption is also included as a broad background.

Fig. 3
Fig. 3

Transmission spectrum change (ΔT/T) ((a) and (b)) and absorption spectrum change (Δαl) ((c) and (d)) as a function of delay time (Δt) under low ((b) and (d)) and high ((a) and (c)) peak THz pump intensity. The peak THz E-field amplitude is 0.22 MV/cm ((b) and (d)), and 0.69 MV/cm ((a) and (c)) at Δt = 0 ps. The left panels in Figs. 3(a) and (b) show the temporal profiles of the squared THz E-field (solid line). The THz temporal profiles in (a) and (b) are different because of the slightly different day-to-day alignment of the THz generation. The transmission change signals at probe photon energy of 1.24 eV as indicated by the vertical lines in the right panels are also shown by open circles. The right panels in Figs. 3(a) and (b) show image plots of ΔT/T spectra versus Δt. Figures 3(c) and (d) show the spectral profile of Δαl at Δt = 0 ps and Δt = 1.6 ps, respectively.

Fig. 4
Fig. 4

Results for the near-IR-pump (h̄ωpump = 1.55 eV) ((a)–(c)) and THz-pump experiments (h̄ωpump ∼ 4 meV) ((d)–(f)). (a) and (d): Absorption spectrum change around exciton resonance of (7,5) and (6,5) SWNTs for various pump fluence. Time delay Δt was set to 1 ps after photoexcitation. (b) and (e): Pump fluence dependence of absorption changes at 1.24 eV and 1 ps after photoexcitation. Circles represent experimental results and lines represent fitting curves: a line in Fig. 4(b) and −Δαl=0.3· exp(−Eth/ETHzt=0 ps)) (Eth=2.3 MV/cm) in Fig. 4(e). (c) and (f): Delay time dependence of the absorption change at 1.24 eV. Insets show semi-log plots of the absorption change in the longer time range of Δt =10–40 ps. Circles are experimental results; lines are fitting curves. Details of the fitting are given in the text.

Fig. 5
Fig. 5

(a) Temporal profile of the pump’s THz E-field pulse. (b) Delay time dependence of the absorption changes (open circles) at 1.24 eV at various THz pump fluence. The peak THz E-field amplitude at Δt = 0 is indicated in each panel. Red lines are fitting curves using equation (2).

Fig. 6
Fig. 6

(a) Peak THz E-field amplitude dependence of the bleaching signal normalised by the linear absorption, −Δα/α, at Δt = 1 ps for absorption peak A (1.20 and 1.24 eV), B (1.07 eV), and C (0.97 eV) in Fig. 2. The corresponding tube chiralities (n, m) and their diameters are indicated. Lines are fitting curves to the function A · exp(−Eth/ETHz), where A and Eth are fitting parameters. The arrows indicate one fifth of the threshold E-field amplitude (Eth/5). (b) Log-log plot of the tube diameter dependence of the threshold THz E-field amplitude. Vertical error bars represent the fitting uncertainty in Fig. 6(a). Horizontal error bars represent the uncertainty of the tube diameter due to the mixing of two or three (n, m) SWNT structures. The solid line represents the result of fitting with the regression function Eth = A/d2.

Tables (1)

Tables Icon

Table 1 Fitting parameters of the absorption spectrum analysis used in Fig. 2 using Eq. (1)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i = 1 4 A i . γ i / 2 ( E E i ) 2 + ( γ i / 2 ) 2
Δ α l ( Δ t ) = A E THz 2 ( Δ t ) + B Δ t exp ( E th E THz ( t ) ) ( e ( Δ t t ) / τ 1 + C e ( Δ t t ) / τ 2 ) d t

Metrics