Abstract

We present a heralded single-photon source with a much lower level of unwanted background photons in the output channel by using the herald photon to control a shutter in the heralded channel. The shutter is implemented using a simple field programable gate array controlled optical switch.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://www.quantumcandela.net .
  2. G. Brida, M. Genovese, and M. Gramegna, “Twin-Photon techniques for photo-detector calibration,” Laser Phys. Lett. 3, 115–123 (2006).
    [CrossRef]
  3. S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56(9), 10451052 (2009) and refs. therein.
    [CrossRef]
  4. R. Thew and N. Gisin, “Quantum communication,” Nature Photon. 1, 165171 (2007) and refs. therein.
  5. J. L. O’Brien, A. Furusawa, and J. Vickovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and refs. therein.
    [CrossRef]
  6. M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. 413, 319–396 (2005) and refs. therein.
    [CrossRef]
  7. G. Brida, I.P. Degiovanni, M. Genovese, V. Schettini, S. Polyakov, and A. Migdall, “Experimental test of non-classicality for a single particle,” Opt. Express,  16, 11750–11758 (2008).
    [CrossRef] [PubMed]
  8. G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009).
    [CrossRef]
  9. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
    [CrossRef]
  10. D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Kvant. Elektron. (Moscow) 4, 10561062 (1977) [Sov. J. Quantum Electron. 7, 591595 (1977)].
  11. C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
    [CrossRef] [PubMed]
  12. A. B. U‘Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).
    [CrossRef]
  13. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Spatial and spectral mode selection of heralded single photons from pulsed parametric down-conversion,” Opt. Express 13, 6709–6722 (2005).
    [CrossRef] [PubMed]
  14. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
    [CrossRef]
  15. A. B. URen, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).
  16. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).
  17. J. Fan and A. Migdall, “A broadband high spectral brightness fiber-based two-photon source,” Opt. Express 15, 2915–2920 (2007).
    [CrossRef] [PubMed]
  18. J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 2043836 (2007).
    [CrossRef]
  19. J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15, 18339–18344 (2007).
    [CrossRef] [PubMed]
  20. J. Fulconis, O. Alibart, J. L. OBrien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
    [CrossRef] [PubMed]
  21. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
    [CrossRef]
  22. F. A. Bovino, P. Varisco, M. A. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective Fiber-coupling of Entangled Photons for Quantum Communication,” Opt. Commun. 227, 343–348 (2003).
    [CrossRef]
  23. S. Castelletto, I.P. Degiovanni, A. Migdall, and M. Ware, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. Phys. 6, 87 (2004).
    [CrossRef]
  24. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
    [CrossRef] [PubMed]
  25. T. Horikiri, Y. Takeno, A. Yabushita, and T. Kobayashi, “Photon-number-resolved heralded-photon source for improved quantum key distribution,” Phys. Rev. A. 76, 012306 (2007).
    [CrossRef]
  26. A. Migdall, “Correlated-Photon Metrology Without Absolute Standards,” Phys. Today 52, 41–46 (1999).
    [CrossRef]
  27. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source,” Phys. Rev. A 66, 053805(2002).
    [CrossRef]
  28. E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004)
    [CrossRef]
  29. S. Takeuchi, R. Okamoto, and K. Sasaki, “High-yield single-photon source using gated spontaneous parametric downconversion,” Appl. Opt. 43, 57085711 (2004)
    [CrossRef] [PubMed]
  30. M. Oxborrow and A. C. Sinclair, “Single-photon sources,” Contemp. Phys. 46, 173–206 (2005).
    [CrossRef]
  31. S. Scheel, “Single-photon sources- an introduction,” J. Mod. Opt. 56, 141–160 (2009).
    [CrossRef]
  32. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 11, 173–179 (1986).
    [CrossRef]
  33. G. Brida, M. Genovese, M. Gramegna, and E. Predazzi, “A conclusive experiment to throw more light on light,” Phys. Lett. A 328, 313–318 (2004).
    [CrossRef]
  34. J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596 (2003).
    [CrossRef]
  35. A. Bennett, D. Unitt, P. Atkinson, D. Ritchie, and A. Shields, Opt. Express 13, 50–55 (2005).
    [CrossRef] [PubMed]
  36. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
    [CrossRef] [PubMed]
  37. http://www.eospace.com/Switches.htm
  38. Certain commercial equipment, instruments or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.
  39. All the uncertainties and the error bars correspond to the coverage factor k = 1 except for the 95% confidence bands of Fig. 3.
  40. R. H. Hadfield, “Single-photon detectors for optical quantum information,” Nature Photon. 3, 696–705 (2009) and references therein.
    [CrossRef]

2009 (5)

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56(9), 10451052 (2009) and refs. therein.
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vickovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and refs. therein.
[CrossRef]

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009).
[CrossRef]

S. Scheel, “Single-photon sources- an introduction,” J. Mod. Opt. 56, 141–160 (2009).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information,” Nature Photon. 3, 696–705 (2009) and references therein.
[CrossRef]

2008 (1)

2007 (7)

J. Fan and A. Migdall, “A broadband high spectral brightness fiber-based two-photon source,” Opt. Express 15, 2915–2920 (2007).
[CrossRef] [PubMed]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[CrossRef] [PubMed]

J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15, 18339–18344 (2007).
[CrossRef] [PubMed]

R. Thew and N. Gisin, “Quantum communication,” Nature Photon. 1, 165171 (2007) and refs. therein.

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 2043836 (2007).
[CrossRef]

J. Fulconis, O. Alibart, J. L. OBrien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

T. Horikiri, Y. Takeno, A. Yabushita, and T. Kobayashi, “Photon-number-resolved heralded-photon source for improved quantum key distribution,” Phys. Rev. A. 76, 012306 (2007).
[CrossRef]

2006 (1)

G. Brida, M. Genovese, and M. Gramegna, “Twin-Photon techniques for photo-detector calibration,” Laser Phys. Lett. 3, 115–123 (2006).
[CrossRef]

2005 (5)

M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. 413, 319–396 (2005) and refs. therein.
[CrossRef]

A. B. URen, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

A. Bennett, D. Unitt, P. Atkinson, D. Ritchie, and A. Shields, Opt. Express 13, 50–55 (2005).
[CrossRef] [PubMed]

S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Spatial and spectral mode selection of heralded single photons from pulsed parametric down-conversion,” Opt. Express 13, 6709–6722 (2005).
[CrossRef] [PubMed]

M. Oxborrow and A. C. Sinclair, “Single-photon sources,” Contemp. Phys. 46, 173–206 (2005).
[CrossRef]

2004 (7)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

G. Brida, M. Genovese, M. Gramegna, and E. Predazzi, “A conclusive experiment to throw more light on light,” Phys. Lett. A 328, 313–318 (2004).
[CrossRef]

S. Castelletto, I.P. Degiovanni, A. Migdall, and M. Ware, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. Phys. 6, 87 (2004).
[CrossRef]

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004)
[CrossRef]

S. Takeuchi, R. Okamoto, and K. Sasaki, “High-yield single-photon source using gated spontaneous parametric downconversion,” Appl. Opt. 43, 57085711 (2004)
[CrossRef] [PubMed]

A. B. U‘Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[CrossRef]

2003 (2)

F. A. Bovino, P. Varisco, M. A. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective Fiber-coupling of Entangled Photons for Quantum Communication,” Opt. Commun. 227, 343–348 (2003).
[CrossRef]

J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596 (2003).
[CrossRef]

2002 (1)

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source,” Phys. Rev. A 66, 053805(2002).
[CrossRef]

2001 (1)

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

1999 (1)

A. Migdall, “Correlated-Photon Metrology Without Absolute Standards,” Phys. Today 52, 41–46 (1999).
[CrossRef]

1986 (3)

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 11, 173–179 (1986).
[CrossRef]

1977 (1)

D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Kvant. Elektron. (Moscow) 4, 10561062 (1977) [Sov. J. Quantum Electron. 7, 591595 (1977)].

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).

Alibart, O.

J. Fulconis, O. Alibart, J. L. OBrien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[CrossRef]

Aspect, A.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 11, 173–179 (1986).
[CrossRef]

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Atkinson, P.

Baldi, P.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[CrossRef]

Ball, J. L.

A. B. URen, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

Banaszek, K.

A. B. URen, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

A. B. U‘Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef]

Bennett, A.

Beveratos, A.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[CrossRef]

Bovino, F. A.

F. A. Bovino, P. Varisco, M. A. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective Fiber-coupling of Entangled Photons for Quantum Communication,” Opt. Commun. 227, 343–348 (2003).
[CrossRef]

Branning, D.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source,” Phys. Rev. A 66, 053805(2002).
[CrossRef]

Brida, G.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009).
[CrossRef]

G. Brida, I.P. Degiovanni, M. Genovese, V. Schettini, S. Polyakov, and A. Migdall, “Experimental test of non-classicality for a single particle,” Opt. Express,  16, 11750–11758 (2008).
[CrossRef] [PubMed]

G. Brida, M. Genovese, and M. Gramegna, “Twin-Photon techniques for photo-detector calibration,” Laser Phys. Lett. 3, 115–123 (2006).
[CrossRef]

G. Brida, M. Genovese, M. Gramegna, and E. Predazzi, “A conclusive experiment to throw more light on light,” Phys. Lett. A 328, 313–318 (2004).
[CrossRef]

Castagnoli, G.

F. A. Bovino, P. Varisco, M. A. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective Fiber-coupling of Entangled Photons for Quantum Communication,” Opt. Commun. 227, 343–348 (2003).
[CrossRef]

Castelletto, S.

S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Spatial and spectral mode selection of heralded single photons from pulsed parametric down-conversion,” Opt. Express 13, 6709–6722 (2005).
[CrossRef] [PubMed]

S. Castelletto, I.P. Degiovanni, A. Migdall, and M. Ware, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. Phys. 6, 87 (2004).
[CrossRef]

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source,” Phys. Rev. A 66, 053805(2002).
[CrossRef]

Colla, M. A.

F. A. Bovino, P. Varisco, M. A. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective Fiber-coupling of Entangled Photons for Quantum Communication,” Opt. Commun. 227, 343–348 (2003).
[CrossRef]

Degiovanni, I. P.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009).
[CrossRef]

S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Spatial and spectral mode selection of heralded single photons from pulsed parametric down-conversion,” Opt. Express 13, 6709–6722 (2005).
[CrossRef] [PubMed]

Degiovanni, I.P.

G. Brida, I.P. Degiovanni, M. Genovese, V. Schettini, S. Polyakov, and A. Migdall, “Experimental test of non-classicality for a single particle,” Opt. Express,  16, 11750–11758 (2008).
[CrossRef] [PubMed]

S. Castelletto, I.P. Degiovanni, A. Migdall, and M. Ware, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. Phys. 6, 87 (2004).
[CrossRef]

Di Giuseppe, G.

F. A. Bovino, P. Varisco, M. A. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective Fiber-coupling of Entangled Photons for Quantum Communication,” Opt. Commun. 227, 343–348 (2003).
[CrossRef]

Eisaman, M. D.

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 2043836 (2007).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15, 18339–18344 (2007).
[CrossRef] [PubMed]

Fan, J.

Fasel, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[CrossRef]

Fattal, D.

J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596 (2003).
[CrossRef]

Fedrizzi, A.

Fulconis, J.

J. Fulconis, O. Alibart, J. L. OBrien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vickovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and refs. therein.
[CrossRef]

Genovese, M.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009).
[CrossRef]

G. Brida, I.P. Degiovanni, M. Genovese, V. Schettini, S. Polyakov, and A. Migdall, “Experimental test of non-classicality for a single particle,” Opt. Express,  16, 11750–11758 (2008).
[CrossRef] [PubMed]

G. Brida, M. Genovese, and M. Gramegna, “Twin-Photon techniques for photo-detector calibration,” Laser Phys. Lett. 3, 115–123 (2006).
[CrossRef]

M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. 413, 319–396 (2005) and refs. therein.
[CrossRef]

G. Brida, M. Genovese, M. Gramegna, and E. Predazzi, “A conclusive experiment to throw more light on light,” Phys. Lett. A 328, 313–318 (2004).
[CrossRef]

Gisin, N.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009).
[CrossRef]

R. Thew and N. Gisin, “Quantum communication,” Nature Photon. 1, 165171 (2007) and refs. therein.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[CrossRef]

Gramegna, M.

G. Brida, M. Genovese, and M. Gramegna, “Twin-Photon techniques for photo-detector calibration,” Laser Phys. Lett. 3, 115–123 (2006).
[CrossRef]

G. Brida, M. Genovese, M. Gramegna, and E. Predazzi, “A conclusive experiment to throw more light on light,” Phys. Lett. A 328, 313–318 (2004).
[CrossRef]

Grangier, P.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 11, 173–179 (1986).
[CrossRef]

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information,” Nature Photon. 3, 696–705 (2009) and references therein.
[CrossRef]

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Herbst, T.

Hong, C. K.

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

Horikiri, T.

T. Horikiri, Y. Takeno, A. Yabushita, and T. Kobayashi, “Photon-number-resolved heralded-photon source for improved quantum key distribution,” Phys. Rev. A. 76, 012306 (2007).
[CrossRef]

Jeffrey, E.

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004)
[CrossRef]

Jennewein, T.

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Klyshko, D. N.

D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Kvant. Elektron. (Moscow) 4, 10561062 (1977) [Sov. J. Quantum Electron. 7, 591595 (1977)].

Kobayashi, T.

T. Horikiri, Y. Takeno, A. Yabushita, and T. Kobayashi, “Photon-number-resolved heralded-photon source for improved quantum key distribution,” Phys. Rev. A. 76, 012306 (2007).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Kwiat, P. G.

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004)
[CrossRef]

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Mandel, L.

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

Migdall, A.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009).
[CrossRef]

G. Brida, I.P. Degiovanni, M. Genovese, V. Schettini, S. Polyakov, and A. Migdall, “Experimental test of non-classicality for a single particle,” Opt. Express,  16, 11750–11758 (2008).
[CrossRef] [PubMed]

J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15, 18339–18344 (2007).
[CrossRef] [PubMed]

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 2043836 (2007).
[CrossRef]

J. Fan and A. Migdall, “A broadband high spectral brightness fiber-based two-photon source,” Opt. Express 15, 2915–2920 (2007).
[CrossRef] [PubMed]

S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Spatial and spectral mode selection of heralded single photons from pulsed parametric down-conversion,” Opt. Express 13, 6709–6722 (2005).
[CrossRef] [PubMed]

S. Castelletto, I.P. Degiovanni, A. Migdall, and M. Ware, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. Phys. 6, 87 (2004).
[CrossRef]

A. Migdall, “Correlated-Photon Metrology Without Absolute Standards,” Phys. Today 52, 41–46 (1999).
[CrossRef]

Migdall, A. L.

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56(9), 10451052 (2009) and refs. therein.
[CrossRef]

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source,” Phys. Rev. A 66, 053805(2002).
[CrossRef]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vickovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and refs. therein.
[CrossRef]

Oberparleiter, M.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

OBrien, J. L.

J. Fulconis, O. Alibart, J. L. OBrien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Okamoto, R.

S. Takeuchi, R. Okamoto, and K. Sasaki, “High-yield single-photon source using gated spontaneous parametric downconversion,” Appl. Opt. 43, 57085711 (2004)
[CrossRef] [PubMed]

Oxborrow, M.

M. Oxborrow and A. C. Sinclair, “Single-photon sources,” Contemp. Phys. 46, 173–206 (2005).
[CrossRef]

Peters, N. A.

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004)
[CrossRef]

Piacentini, F.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009).
[CrossRef]

Polyakov, S.

Polyakov, S. V.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009).
[CrossRef]

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56(9), 10451052 (2009) and refs. therein.
[CrossRef]

Poppe, A.

Predazzi, E.

G. Brida, M. Genovese, M. Gramegna, and E. Predazzi, “A conclusive experiment to throw more light on light,” Phys. Lett. A 328, 313–318 (2004).
[CrossRef]

Rarity, J. G.

J. Fulconis, O. Alibart, J. L. OBrien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Ritchie, D.

Roger, G.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 11, 173–179 (1986).
[CrossRef]

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Santori, C.

J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596 (2003).
[CrossRef]

Sasaki, K.

S. Takeuchi, R. Okamoto, and K. Sasaki, “High-yield single-photon source using gated spontaneous parametric downconversion,” Appl. Opt. 43, 57085711 (2004)
[CrossRef] [PubMed]

Scheel, S.

S. Scheel, “Single-photon sources- an introduction,” J. Mod. Opt. 56, 141–160 (2009).
[CrossRef]

Schettini, V.

Sergienko, A. V.

F. A. Bovino, P. Varisco, M. A. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective Fiber-coupling of Entangled Photons for Quantum Communication,” Opt. Commun. 227, 343–348 (2003).
[CrossRef]

Shields, A.

Silberhorn, C.

A. B. URen, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

A. B. U‘Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef]

Sinclair, A. C.

M. Oxborrow and A. C. Sinclair, “Single-photon sources,” Contemp. Phys. 46, 173–206 (2005).
[CrossRef]

Solomon, G. S.

J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596 (2003).
[CrossRef]

Takeno, Y.

T. Horikiri, Y. Takeno, A. Yabushita, and T. Kobayashi, “Photon-number-resolved heralded-photon source for improved quantum key distribution,” Phys. Rev. A. 76, 012306 (2007).
[CrossRef]

Takeuchi, S.

S. Takeuchi, R. Okamoto, and K. Sasaki, “High-yield single-photon source using gated spontaneous parametric downconversion,” Appl. Opt. 43, 57085711 (2004)
[CrossRef] [PubMed]

Tanzilli, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[CrossRef]

Thew, R.

R. Thew and N. Gisin, “Quantum communication,” Nature Photon. 1, 165171 (2007) and refs. therein.

U‘Ren, A. B.

A. B. U‘Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef]

Unitt, D.

URen, A. B.

A. B. URen, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

Varisco, P.

F. A. Bovino, P. Varisco, M. A. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective Fiber-coupling of Entangled Photons for Quantum Communication,” Opt. Commun. 227, 343–348 (2003).
[CrossRef]

Vickovic, J.

J. L. O’Brien, A. Furusawa, and J. Vickovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and refs. therein.
[CrossRef]

Vuckovic, J.

J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596 (2003).
[CrossRef]

Wadsworth, W. J.

J. Fulconis, O. Alibart, J. L. OBrien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Walmsley, I. A.

A. B. URen, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

Walmsley, I.A.

A. B. U‘Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef]

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Ware, M.

S. Castelletto, I.P. Degiovanni, A. Migdall, and M. Ware, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. Phys. 6, 87 (2004).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Yabushita, A.

T. Horikiri, Y. Takeno, A. Yabushita, and T. Kobayashi, “Photon-number-resolved heralded-photon source for improved quantum key distribution,” Phys. Rev. A. 76, 012306 (2007).
[CrossRef]

Yamamoto, Y.

J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596 (2003).
[CrossRef]

Zbinden, H.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[CrossRef]

Zeilinger, A.

Appl. Opt. (1)

S. Takeuchi, R. Okamoto, and K. Sasaki, “High-yield single-photon source using gated spontaneous parametric downconversion,” Appl. Opt. 43, 57085711 (2004)
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596 (2003).
[CrossRef]

Contemp. Phys. (1)

M. Oxborrow and A. C. Sinclair, “Single-photon sources,” Contemp. Phys. 46, 173–206 (2005).
[CrossRef]

Europhys. Lett. (2)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 11, 173–179 (1986).
[CrossRef]

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

J. Mod. Opt. (2)

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56(9), 10451052 (2009) and refs. therein.
[CrossRef]

S. Scheel, “Single-photon sources- an introduction,” J. Mod. Opt. 56, 141–160 (2009).
[CrossRef]

Kvant. Elektron. (Moscow) (1)

D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Kvant. Elektron. (Moscow) 4, 10561062 (1977) [Sov. J. Quantum Electron. 7, 591595 (1977)].

Laser Phys. Lett. (1)

G. Brida, M. Genovese, and M. Gramegna, “Twin-Photon techniques for photo-detector calibration,” Laser Phys. Lett. 3, 115–123 (2006).
[CrossRef]

Nature (1)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[CrossRef] [PubMed]

Nature Photon. (3)

R. H. Hadfield, “Single-photon detectors for optical quantum information,” Nature Photon. 3, 696–705 (2009) and references therein.
[CrossRef]

R. Thew and N. Gisin, “Quantum communication,” Nature Photon. 1, 165171 (2007) and refs. therein.

J. L. O’Brien, A. Furusawa, and J. Vickovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009) and refs. therein.
[CrossRef]

New J. Phys. (3)

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[CrossRef]

S. Castelletto, I.P. Degiovanni, A. Migdall, and M. Ware, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. Phys. 6, 87 (2004).
[CrossRef]

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys. 6, 100 (2004)
[CrossRef]

Opt. Commun. (1)

F. A. Bovino, P. Varisco, M. A. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective Fiber-coupling of Entangled Photons for Quantum Communication,” Opt. Commun. 227, 343–348 (2003).
[CrossRef]

Opt. Express (6)

Phys. Lett. A (1)

G. Brida, M. Genovese, M. Gramegna, and E. Predazzi, “A conclusive experiment to throw more light on light,” Phys. Lett. A 328, 313–318 (2004).
[CrossRef]

Phys. Rep. (1)

M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. 413, 319–396 (2005) and refs. therein.
[CrossRef]

Phys. Rev. A (5)

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009).
[CrossRef]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

A. B. URen, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 2043836 (2007).
[CrossRef]

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source,” Phys. Rev. A 66, 053805(2002).
[CrossRef]

Phys. Rev. A. (1)

T. Horikiri, Y. Takeno, A. Yabushita, and T. Kobayashi, “Photon-number-resolved heralded-photon source for improved quantum key distribution,” Phys. Rev. A. 76, 012306 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

J. Fulconis, O. Alibart, J. L. OBrien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

A. B. U‘Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef]

Phys. Today (1)

A. Migdall, “Correlated-Photon Metrology Without Absolute Standards,” Phys. Today 52, 41–46 (1999).
[CrossRef]

Other (5)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).

http://www.quantumcandela.net .

http://www.eospace.com/Switches.htm

Certain commercial equipment, instruments or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.

All the uncertainties and the error bars correspond to the coverage factor k = 1 except for the 95% confidence bands of Fig. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experiment arrangement. Channel A is the low-noise HSPS output. Channel B is sent to a beam dump.

Fig. 2
Fig. 2

Histograms of DET1 100 ns detection window (Δtswitch = 30 ns, with 25 ps time bins). (a) The peak is inside the switch pulse region; true, background, and dark count contributions are clearly seen. (b) The heralded photon peak is outside of the OS active region thus it is highly suppressed. The inset shows a closeup of a switch-on region, with the solid line showing the shape of the electrical pulse driving the OS. The estimated integrals of true, background, and dark counts (measured in 1000 s corresponding to N(Trig) = 3.52 × 107) are shown in the feature labels and defined in the text.

Fig. 3
Fig. 3

(a) ONF and (b) α (≃ g(2)(0)) parameters versus the switching time Δtswitch. The linear fits (line) of the data (points) are shown along with 95% confidence bands (dashed curves).

Tables (1)

Tables Icon

Table 1 Data used to calculate α parameter for the switch-on duration of Δtswitch = 5 ns: every value is the average of 10 acquisitions of 100 s each, with a trigger count rates of 3.48 ×104 counts/s.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P i ( True ) = N i ( True ) N i ( Trig ) i = 1 , 2
P i ( Tot ) = P i ( True ) + P i ( Bkg ) + P i ( Dark ) .
O N F = P 1 ( Bkg ) + P 2 ( Bkg ) P 1 ( True ) + P 1 ( Bkg ) + P 2 ( True ) + P 2 ( Bkg ) .
α = P 12 ( True + Bkg ; True + Bkg ) P 1 ( True + Bkg ) P 2 ( True + Bkg ) ,
P 12 ( True + Bkg ; True + Bkg ) = P 12 ( Tot ; Tot ) P 12 ( Dark ; tot ) P 12 ( Tot ; Dark ) + P 12 ( Dark ; Dark ) .
r = P peak out ( True ) P peak in ( True ) .
F ( Bkg ) = P 1 ( Bkg ) + P 2 Bkg Δ t switch 1 η ,
f ( Bkg ) = F ( Bkg ) r
γ = P 1 ( True ) + P 2 ( True ) η .

Metrics