Abstract

A two-dimensional tantalum pentoxide (Ta2O5) photonic crystal (PC) slab with low-background emission was fabricated and a 12-fold enhancement of fluorescence from the organic dyes of perylene diimide adsorbed on the surface of the PCs was observed. The background emissions of the Ta2O5 substrates with and without the PCs after thermal annealing at 600°C with oxygen gas were comparable to that of a well-cleaned cover glass. This is to date the lowest level of background emissions of two-dimensional PCs using materials with a high refractive index (>2). The results reported here provide new insights into the fabrication of the photonic devices that enable highly sensitive fluorescence microscopy or optical detections.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals - Modeling the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).
  2. I. A. Sukhoivanov, and I. V. Guryev, Photonic Crystals: Physics and Practical Modeling (Springer, Berlin, 2009).
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  5. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
    [CrossRef] [PubMed]
  6. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
    [CrossRef]
  7. V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
    [CrossRef]
  8. P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
    [CrossRef] [PubMed]
  9. S. Kubo, A. Fujishima, O. Sato, and H. Segawa, “Anisotropic accelerated emission of the chromophores in photonic crystals consisting of a polystyrene opal structure,” J. Phys. Chem. C 113(27), 11704–11711 (2009).
    [CrossRef]
  10. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
    [CrossRef]
  11. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001).
    [CrossRef]
  12. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
    [CrossRef]
  13. L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
    [CrossRef] [PubMed]
  14. X. Xu, T. Yamada, R. Ueda, and A. Otomo, “Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals,” Appl. Phys. Lett. 95(22), 221113 (2009).
    [CrossRef]
  15. S. Inoue and S. Yokoyama, “Enhancement of two-photon excited fluorescence in two-dimensional nonlinear optical polymer photonic crystal waveguides,” Appl. Phys. Lett. 93(11), 111110 (2008).
    [CrossRef]
  16. A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
    [CrossRef] [PubMed]
  17. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, New York, 2006).
  18. C.-H. Kao, H. Chen, J. S. Chiu, K. S. Chen, and Y. T. Pan, “Physical and electrical characteristics of the high-k Ta2O5 (tantalum pentoxide) dielectric deposited on the polycrystalline silicon,” Appl. Phys. Lett. 96(11), 112901 (2010).
    [CrossRef]
  19. J. Lin, N. Masaaki, A. Tsukune, and M. Yamada, “Ta2O5 thin films with exceptionally high dielectric constant,” Appl. Phys. Lett. 74(16), 2370–2372 (1999).
    [CrossRef]
  20. Z. W. Fu, M. F. Zhou, and Q. Z. Qin, “Temporal and spatial TaO emission generated from UV laser ablation of Ta and Ta2O5 in oxygen ambient,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 445–449 (1997).
    [CrossRef]
  21. H. Ohkubo, Y. Ohtera, S. Kawakami, and T. Chiba, “Design and fabrication of multichannel photonic crystal wavelength filters to suppress crosstalk of arrayed waveguide grating,” Jpn. J. Appl. Phys. 44(3), 1534–1541 (2005).
    [CrossRef]
  22. K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
    [CrossRef]
  23. T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
    [CrossRef]
  24. S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
    [CrossRef] [PubMed]
  25. H. Ono and K. Koyanagi, “Infrared absorption peak due to Ta=O bonds in Ta2O5 thin films,” Appl. Phys. Lett. 77(10), 1431–1433 (2000).
    [CrossRef]
  26. H. Grüger, Ch. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing,” Thin Solid Films 447–448, 509–515 (2004).
    [CrossRef]
  27. T. Yamada and A. Otomo, “Time-correlated single photon counting system and light-collection system for studying fluorescence emitters under high-vacuum condition: Use of immersion objective and ionic liquid,” Thin Solid Films 518(2), 432–436 (2009).
    [CrossRef]
  28. X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
    [CrossRef] [PubMed]
  29. M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
    [CrossRef] [PubMed]
  30. S. Ito, T. Kusumi, S. Takei, and H. Miyasaka, “Diffusion processes of single fluorescent molecules in a polymer-based thin material with three-dimensional network,” Chem. Commun. (Camb.) (41): 6165–6167 (2009).
    [CrossRef]
  31. W. S. Lau and T. Han, “General theory of acceptor-oxygen-vacancy complex single donor in high-dielectric-constant metallic oxide insulators,” Appl. Phys. Lett. 86(15), 152107 (2005).
    [CrossRef]
  32. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
    [CrossRef]

2010 (3)

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

C.-H. Kao, H. Chen, J. S. Chiu, K. S. Chen, and Y. T. Pan, “Physical and electrical characteristics of the high-k Ta2O5 (tantalum pentoxide) dielectric deposited on the polycrystalline silicon,” Appl. Phys. Lett. 96(11), 112901 (2010).
[CrossRef]

2009 (4)

X. Xu, T. Yamada, R. Ueda, and A. Otomo, “Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals,” Appl. Phys. Lett. 95(22), 221113 (2009).
[CrossRef]

S. Kubo, A. Fujishima, O. Sato, and H. Segawa, “Anisotropic accelerated emission of the chromophores in photonic crystals consisting of a polystyrene opal structure,” J. Phys. Chem. C 113(27), 11704–11711 (2009).
[CrossRef]

T. Yamada and A. Otomo, “Time-correlated single photon counting system and light-collection system for studying fluorescence emitters under high-vacuum condition: Use of immersion objective and ionic liquid,” Thin Solid Films 518(2), 432–436 (2009).
[CrossRef]

S. Ito, T. Kusumi, S. Takei, and H. Miyasaka, “Diffusion processes of single fluorescent molecules in a polymer-based thin material with three-dimensional network,” Chem. Commun. (Camb.) (41): 6165–6167 (2009).
[CrossRef]

2008 (3)

T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
[CrossRef]

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

S. Inoue and S. Yokoyama, “Enhancement of two-photon excited fluorescence in two-dimensional nonlinear optical polymer photonic crystal waveguides,” Appl. Phys. Lett. 93(11), 111110 (2008).
[CrossRef]

2007 (4)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

2006 (2)

X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
[CrossRef] [PubMed]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

2005 (3)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

W. S. Lau and T. Han, “General theory of acceptor-oxygen-vacancy complex single donor in high-dielectric-constant metallic oxide insulators,” Appl. Phys. Lett. 86(15), 152107 (2005).
[CrossRef]

H. Ohkubo, Y. Ohtera, S. Kawakami, and T. Chiba, “Design and fabrication of multichannel photonic crystal wavelength filters to suppress crosstalk of arrayed waveguide grating,” Jpn. J. Appl. Phys. 44(3), 1534–1541 (2005).
[CrossRef]

2004 (2)

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

H. Grüger, Ch. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing,” Thin Solid Films 447–448, 509–515 (2004).
[CrossRef]

2001 (1)

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001).
[CrossRef]

2000 (1)

H. Ono and K. Koyanagi, “Infrared absorption peak due to Ta=O bonds in Ta2O5 thin films,” Appl. Phys. Lett. 77(10), 1431–1433 (2000).
[CrossRef]

1999 (2)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

J. Lin, N. Masaaki, A. Tsukune, and M. Yamada, “Ta2O5 thin films with exceptionally high dielectric constant,” Appl. Phys. Lett. 74(16), 2370–2372 (1999).
[CrossRef]

1997 (2)

Z. W. Fu, M. F. Zhou, and Q. Z. Qin, “Temporal and spatial TaO emission generated from UV laser ablation of Ta and Ta2O5 in oxygen ambient,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 445–449 (1997).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Aartsma, T. J.

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

Altug, H.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Baumann, K.

T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
[CrossRef]

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

Bolten, J.

T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
[CrossRef]

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

Bouchoule, S.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

Brunstein, M.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

Busch, A.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

Canters, G. W.

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

Chan, L. L.

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

Chaudhery, V.

A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

Chen, H.

C.-H. Kao, H. Chen, J. S. Chiu, K. S. Chen, and Y. T. Pan, “Physical and electrical characteristics of the high-k Ta2O5 (tantalum pentoxide) dielectric deposited on the polycrystalline silicon,” Appl. Phys. Lett. 96(11), 112901 (2010).
[CrossRef]

Chen, K. S.

C.-H. Kao, H. Chen, J. S. Chiu, K. S. Chen, and Y. T. Pan, “Physical and electrical characteristics of the high-k Ta2O5 (tantalum pentoxide) dielectric deposited on the polycrystalline silicon,” Appl. Phys. Lett. 96(11), 112901 (2010).
[CrossRef]

Chiba, T.

H. Ohkubo, Y. Ohtera, S. Kawakami, and T. Chiba, “Design and fabrication of multichannel photonic crystal wavelength filters to suppress crosstalk of arrayed waveguide grating,” Jpn. J. Appl. Phys. 44(3), 1534–1541 (2005).
[CrossRef]

Chiu, J. S.

C.-H. Kao, H. Chen, J. S. Chiu, K. S. Chen, and Y. T. Pan, “Physical and electrical characteristics of the high-k Ta2O5 (tantalum pentoxide) dielectric deposited on the polycrystalline silicon,” Appl. Phys. Lett. 96(11), 112901 (2010).
[CrossRef]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Christianen, P. C. M.

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

Cotlet, M.

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

Cunningham, B. T.

A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

De Schryver, F.

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

Engelkamp, H.

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

Englund, D.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Estrada, L. C.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Fu, Z. W.

Z. W. Fu, M. F. Zhou, and Q. Z. Qin, “Temporal and spatial TaO emission generated from UV laser ablation of Ta and Ta2O5 in oxygen ambient,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 445–449 (1997).
[CrossRef]

Fujishima, A.

S. Kubo, A. Fujishima, O. Sato, and H. Segawa, “Anisotropic accelerated emission of the chromophores in photonic crystals consisting of a polystyrene opal structure,” J. Phys. Chem. C 113(27), 11704–11711 (2009).
[CrossRef]

Ganesh, N.

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Gruetzner, G.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

Grüger, H.

H. Grüger, Ch. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing,” Thin Solid Films 447–448, 509–515 (2004).
[CrossRef]

Han, T.

W. S. Lau and T. Han, “General theory of acceptor-oxygen-vacancy complex single donor in high-dielectric-constant metallic oxide insulators,” Appl. Phys. Lett. 86(15), 152107 (2005).
[CrossRef]

Hatzakis, N.

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

Hofkens, J.

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

Huang, C.-S.

A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

Inoue, S.

S. Inoue and S. Yokoyama, “Enhancement of two-photon excited fluorescence in two-dimensional nonlinear optical polymer photonic crystal waveguides,” Appl. Phys. Lett. 93(11), 111110 (2008).
[CrossRef]

Ito, S.

S. Ito, T. Kusumi, S. Takei, and H. Miyasaka, “Diffusion processes of single fluorescent molecules in a polymer-based thin material with three-dimensional network,” Chem. Commun. (Camb.) (41): 6165–6167 (2009).
[CrossRef]

Jäger, M.

X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Johnson, S. R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

Kanskar, M.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

Kao, C.-H.

C.-H. Kao, H. Chen, J. S. Chiu, K. S. Chen, and Y. T. Pan, “Physical and electrical characteristics of the high-k Ta2O5 (tantalum pentoxide) dielectric deposited on the polycrystalline silicon,” Appl. Phys. Lett. 96(11), 112901 (2010).
[CrossRef]

Kawakami, S.

H. Ohkubo, Y. Ohtera, S. Kawakami, and T. Chiba, “Design and fabrication of multichannel photonic crystal wavelength filters to suppress crosstalk of arrayed waveguide grating,” Jpn. J. Appl. Phys. 44(3), 1534–1541 (2005).
[CrossRef]

Kehagias, N.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

Kolodziejski, L.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Koyanagi, K.

H. Ono and K. Koyanagi, “Infrared absorption peak due to Ta=O bonds in Ta2O5 thin films,” Appl. Phys. Lett. 77(10), 1431–1433 (2000).
[CrossRef]

Kubo, S.

S. Kubo, A. Fujishima, O. Sato, and H. Segawa, “Anisotropic accelerated emission of the chromophores in photonic crystals consisting of a polystyrene opal structure,” J. Phys. Chem. C 113(27), 11704–11711 (2009).
[CrossRef]

Kunath, Ch.

H. Grüger, Ch. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing,” Thin Solid Films 447–448, 509–515 (2004).
[CrossRef]

Kurth, E.

H. Grüger, Ch. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing,” Thin Solid Films 447–448, 509–515 (2004).
[CrossRef]

Kurz, H.

T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
[CrossRef]

Kusumi, T.

S. Ito, T. Kusumi, S. Takei, and H. Miyasaka, “Diffusion processes of single fluorescent molecules in a polymer-based thin material with three-dimensional network,” Chem. Commun. (Camb.) (41): 6165–6167 (2009).
[CrossRef]

Kuznetsova, S.

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

Lau, W. S.

W. S. Lau and T. Han, “General theory of acceptor-oxygen-vacancy complex single donor in high-dielectric-constant metallic oxide insulators,” Appl. Phys. Lett. 86(15), 152107 (2005).
[CrossRef]

Le-Gratiet, L.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

Levenson, J. A.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

Lin, J.

J. Lin, N. Masaaki, A. Tsukune, and M. Yamada, “Ta2O5 thin films with exceptionally high dielectric constant,” Appl. Phys. Lett. 74(16), 2370–2372 (1999).
[CrossRef]

Lovera, P.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

Lu, M.

A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

Luo, G.

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

MacKenzie, J.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

Mahrt, R. F.

T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
[CrossRef]

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Martinez, O. E.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

Masaaki, N.

J. Lin, N. Masaaki, A. Tsukune, and M. Yamada, “Ta2O5 thin films with exceptionally high dielectric constant,” Appl. Phys. Lett. 74(16), 2370–2372 (1999).
[CrossRef]

Masuo, S.

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

Mathias, P. C.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

Michalet, X.

X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
[CrossRef] [PubMed]

Miyasaka, H.

S. Ito, T. Kusumi, S. Takei, and H. Miyasaka, “Diffusion processes of single fluorescent molecules in a polymer-based thin material with three-dimensional network,” Chem. Commun. (Camb.) (41): 6165–6167 (2009).
[CrossRef]

Moll, N.

T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
[CrossRef]

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

Mollenhauer, T.

T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
[CrossRef]

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

Monnier, P.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

Moormann, C.

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

Morin, R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

Müllen, K.

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Nolte, R. J. M.

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

Ochiai, T.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001).
[CrossRef]

Ohkubo, H.

H. Ohkubo, Y. Ohtera, S. Kawakami, and T. Chiba, “Design and fabrication of multichannel photonic crystal wavelength filters to suppress crosstalk of arrayed waveguide grating,” Jpn. J. Appl. Phys. 44(3), 1534–1541 (2005).
[CrossRef]

Ohtera, Y.

H. Ohkubo, Y. Ohtera, S. Kawakami, and T. Chiba, “Design and fabrication of multichannel photonic crystal wavelength filters to suppress crosstalk of arrayed waveguide grating,” Jpn. J. Appl. Phys. 44(3), 1534–1541 (2005).
[CrossRef]

Ono, H.

H. Ono and K. Koyanagi, “Infrared absorption peak due to Ta=O bonds in Ta2O5 thin films,” Appl. Phys. Lett. 77(10), 1431–1433 (2000).
[CrossRef]

Otomo, A.

X. Xu, T. Yamada, R. Ueda, and A. Otomo, “Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals,” Appl. Phys. Lett. 95(22), 221113 (2009).
[CrossRef]

T. Yamada and A. Otomo, “Time-correlated single photon counting system and light-collection system for studying fluorescence emitters under high-vacuum condition: Use of immersion objective and ionic liquid,” Thin Solid Films 518(2), 432–436 (2009).
[CrossRef]

Pacradouni, V.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

Paddon, P.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

Pan, Y. T.

C.-H. Kao, H. Chen, J. S. Chiu, K. S. Chen, and Y. T. Pan, “Physical and electrical characteristics of the high-k Ta2O5 (tantalum pentoxide) dielectric deposited on the polycrystalline silicon,” Appl. Phys. Lett. 96(11), 112901 (2010).
[CrossRef]

Pechstein, T.

H. Grüger, Ch. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing,” Thin Solid Films 447–448, 509–515 (2004).
[CrossRef]

Pokhriyal, A.

A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

Pufe, W.

H. Grüger, Ch. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing,” Thin Solid Films 447–448, 509–515 (2004).
[CrossRef]

Qin, Q. Z.

Z. W. Fu, M. F. Zhou, and Q. Z. Qin, “Temporal and spatial TaO emission generated from UV laser ablation of Ta and Ta2O5 in oxygen ambient,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 445–449 (1997).
[CrossRef]

Reboud, V.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

Redmond, G.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

Reuther, F.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

Rowan, A. E.

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

Sagnes, I.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

Sakoda, K.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001).
[CrossRef]

Sato, O.

S. Kubo, A. Fujishima, O. Sato, and H. Segawa, “Anisotropic accelerated emission of the chromophores in photonic crystals consisting of a polystyrene opal structure,” J. Phys. Chem. C 113(27), 11704–11711 (2009).
[CrossRef]

Scherf, U.

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

Schulz, S.

A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

Schuster, C.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

Segawa, H.

S. Kubo, A. Fujishima, O. Sato, and H. Segawa, “Anisotropic accelerated emission of the chromophores in photonic crystals consisting of a polystyrene opal structure,” J. Phys. Chem. C 113(27), 11704–11711 (2009).
[CrossRef]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Sorge, S.

H. Grüger, Ch. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing,” Thin Solid Films 447–448, 509–515 (2004).
[CrossRef]

Sotomayor Torres, C. M.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

Stöferle, T.

T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
[CrossRef]

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

Takei, S.

S. Ito, T. Kusumi, S. Takei, and H. Miyasaka, “Diffusion processes of single fluorescent molecules in a polymer-based thin material with three-dimensional network,” Chem. Commun. (Camb.) (41): 6165–6167 (2009).
[CrossRef]

Talneau, A.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

Tiedje, T.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

Tsukune, A.

J. Lin, N. Masaaki, A. Tsukune, and M. Yamada, “Ta2O5 thin films with exceptionally high dielectric constant,” Appl. Phys. Lett. 74(16), 2370–2372 (1999).
[CrossRef]

Ueda, R.

X. Xu, T. Yamada, R. Ueda, and A. Otomo, “Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals,” Appl. Phys. Lett. 95(22), 221113 (2009).
[CrossRef]

Van der Auweraer, M.

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

Verhoeven, J.

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Vuckovic, J.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Wahlbrink, T.

T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
[CrossRef]

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Weiss, S.

X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
[CrossRef] [PubMed]

Xie, X. S.

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

Xu, X.

X. Xu, T. Yamada, R. Ueda, and A. Otomo, “Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals,” Appl. Phys. Lett. 95(22), 221113 (2009).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yacomotti, A. M.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

Yamada, M.

J. Lin, N. Masaaki, A. Tsukune, and M. Yamada, “Ta2O5 thin films with exceptionally high dielectric constant,” Appl. Phys. Lett. 74(16), 2370–2372 (1999).
[CrossRef]

Yamada, T.

X. Xu, T. Yamada, R. Ueda, and A. Otomo, “Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals,” Appl. Phys. Lett. 95(22), 221113 (2009).
[CrossRef]

T. Yamada and A. Otomo, “Time-correlated single photon counting system and light-collection system for studying fluorescence emitters under high-vacuum condition: Use of immersion objective and ionic liquid,” Thin Solid Films 518(2), 432–436 (2009).
[CrossRef]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Yokoyama, S.

S. Inoue and S. Yokoyama, “Enhancement of two-photon excited fluorescence in two-dimensional nonlinear optical polymer photonic crystal waveguides,” Appl. Phys. Lett. 93(11), 111110 (2008).
[CrossRef]

Young, J. F.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

Zauner, G.

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

Zelsmann, M.

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Zhou, M. F.

Z. W. Fu, M. F. Zhou, and Q. Z. Qin, “Temporal and spatial TaO emission generated from UV laser ablation of Ta and Ta2O5 in oxygen ambient,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 445–449 (1997).
[CrossRef]

Appl. Opt. (1)

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (9)

V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography,” Appl. Phys. Lett. 91(15), 151101 (2007).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997).
[CrossRef]

X. Xu, T. Yamada, R. Ueda, and A. Otomo, “Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals,” Appl. Phys. Lett. 95(22), 221113 (2009).
[CrossRef]

S. Inoue and S. Yokoyama, “Enhancement of two-photon excited fluorescence in two-dimensional nonlinear optical polymer photonic crystal waveguides,” Appl. Phys. Lett. 93(11), 111110 (2008).
[CrossRef]

C.-H. Kao, H. Chen, J. S. Chiu, K. S. Chen, and Y. T. Pan, “Physical and electrical characteristics of the high-k Ta2O5 (tantalum pentoxide) dielectric deposited on the polycrystalline silicon,” Appl. Phys. Lett. 96(11), 112901 (2010).
[CrossRef]

J. Lin, N. Masaaki, A. Tsukune, and M. Yamada, “Ta2O5 thin films with exceptionally high dielectric constant,” Appl. Phys. Lett. 74(16), 2370–2372 (1999).
[CrossRef]

K. Baumann, T. Stöferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, “Organic mixed-order photonic crystal lasers with ultrasmall footprint,” Appl. Phys. Lett. 91(17), 171108 (2007).
[CrossRef]

H. Ono and K. Koyanagi, “Infrared absorption peak due to Ta=O bonds in Ta2O5 thin films,” Appl. Phys. Lett. 77(10), 1431–1433 (2000).
[CrossRef]

W. S. Lau and T. Han, “General theory of acceptor-oxygen-vacancy complex single donor in high-dielectric-constant metallic oxide insulators,” Appl. Phys. Lett. 86(15), 152107 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Z. W. Fu, M. F. Zhou, and Q. Z. Qin, “Temporal and spatial TaO emission generated from UV laser ablation of Ta and Ta2O5 in oxygen ambient,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 445–449 (1997).
[CrossRef]

Chem. Commun. (Camb.) (1)

S. Ito, T. Kusumi, S. Takei, and H. Miyasaka, “Diffusion processes of single fluorescent molecules in a polymer-based thin material with three-dimensional network,” Chem. Commun. (Camb.) (41): 6165–6167 (2009).
[CrossRef]

Chem. Rev. (1)

X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

S. Kubo, A. Fujishima, O. Sato, and H. Segawa, “Anisotropic accelerated emission of the chromophores in photonic crystals consisting of a polystyrene opal structure,” J. Phys. Chem. C 113(27), 11704–11711 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Ohkubo, Y. Ohtera, S. Kawakami, and T. Chiba, “Design and fabrication of multichannel photonic crystal wavelength filters to suppress crosstalk of arrayed waveguide grating,” Jpn. J. Appl. Phys. 44(3), 1534–1541 (2005).
[CrossRef]

Microelectron. Eng. (1)

T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. F. Mahrt, “Fabrication and characterization of Ta2O5 photonic feedback structures,” Microelectron. Eng. 85(5-6), 1425–1428 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Opt. Express (2)

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

Phys. Rev. B (2)

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Cotlet, S. Masuo, G. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Müllen, X. S. Xie, and F. De Schryver, “Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer,” Proc. Natl. Acad. Sci. U.S.A. 101(40), 14343–14348 (2004).
[CrossRef] [PubMed]

S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen, and G. W. Canters, “The enzyme mechanism of nitrite reductase studied at single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 105(9), 3250–3255 (2008).
[CrossRef] [PubMed]

Thin Solid Films (2)

H. Grüger, Ch. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing,” Thin Solid Films 447–448, 509–515 (2004).
[CrossRef]

T. Yamada and A. Otomo, “Time-correlated single photon counting system and light-collection system for studying fluorescence emitters under high-vacuum condition: Use of immersion objective and ionic liquid,” Thin Solid Films 518(2), 432–436 (2009).
[CrossRef]

Other (3)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals - Modeling the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).

I. A. Sukhoivanov, and I. V. Guryev, Photonic Crystals: Physics and Practical Modeling (Springer, Berlin, 2009).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, New York, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A schematic diagram of a Ta2O5/cover glass photonic crystal (PC) slab. (b) A scanning electron microscope (SEM) image of a PC with a lattice constant of 360 nm fabricated on the Ta2O5/cover glass substrate.

Fig. 2
Fig. 2

Time-resolved background emission of (a) a control cover glass and (b) a Ta2O5/cover glass substrate, excited with a ps 488 nm laser of 2.6 μW for 30 s. (c) The laser power dependence of background emission of the control cover glass (crosses), the Ta2O5/cover glass substrate (squares), and PCs with a lattice constant of 360 (circles), 600 (triangles), and 800 (diamonds) nm fabricated on the Ta2O5/cover glass substrate.

Fig. 3
Fig. 3

(a) Fluorescence decay profiles of PDI dyes on PCs with a lattice constant of 360 (squares), 600 (triangles), 800 (diamonds) nm and out of PCs (circles) fabricated on the Ta2O5/cover glass substrate, excited with a ps 488 nm laser of 80 nW for 30 s. The inset shows a logarithmic plot of the fluorescence decay profiles. Normalized absorption (red) and fluorescence (blue) spectra, and the PDI structure are shown on the right side of the graph. (b) The lattice constant dependence of the fluorescence intensities of PDI on PC (squares) and out of PC (circles). (c) Enhancement factors of the fluorescence intensities of PDI with one-photon excitation (488 nm) (squares) and two-photon excitation (976 nm) (triangles). The laser power for two-photon excitation was 30 mW.

Fig. 4
Fig. 4

(a) A photonic band structure of a Ta2O5 PC slab on cover glass with 2r/a = 0.80 and d = a/3 (circles), where a is a lattice constant, r is a radius of the air hole, and d is a thickness of the slab. The black solid line and the red dashed line respectively represent a light line (ω = ck) in air and a line corresponding to an incident angle of 27° (ω = ck/sinθ), where ω is a frequency, c is the speed of light, k is an in-plane wave vector, and θ is an incident angle. (b) The lattice constant dependence of the wavelength of the modes that couple with the light in the incident angle of 0-27° (see text). Horizontal lines indicate the wavelengths of the excitation lasers (488 and 976 nm) and the fluorescence peaks of PDI (536 and 575 nm). The data point corresponds to the modes above the red dashed line. The high frequency bands above ~1 are not shown.

Metrics