Abstract

We demonstrate an opto-fluidic detection system based on an array of astigmatic diffractive microlenses integrated into a microfluidic flow focus device. Each astigmatic microlens produces a line excitation across the channel and collects fluorescence emission from the linear detection regions. The linear excitation spot results in uniform excitation across the channel and high time resolution in the direction of the flow. Collected fluorescence from each integrated microlens is relayed to a sub-region on a fast CMOS camera. By analyzing the signal from individual microlenses, we demonstrate counting and resolution of 500 nm and 1.1 μm beads at rates of up to 8,300 per second at multiple locations. In addition, a cross-correlation analysis of the signals from different microlenses yields the velocity dispersion of beads traveling through the channel at peak speeds as high as 560 mm/s. Arrays of specifically designed diffractive optics promise to increase the resolution and functionality of opto-fluidic analysis such as flow cytometry and fluorescence cross-correlation spectroscopy.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Shapiro, Practical Flow Cytometry, 3rd ed. (Wiley-Liss, 1995).
  2. D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
    [Crossref] [PubMed]
  3. D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 73, 5334–5338 (2001).
  4. C. Simonnet and A. Groisman, “High-throughput and high-resolution flow cytometry in molded microfluidic devices,” Anal. Chem. 78(16), 5653–5663 (2006).
    [Crossref] [PubMed]
  5. J. F. Dishinger and R. T. Kennedy, “Multiplexed detection and applications for separations on parallel microchips,” Electrophoresis 29(16), 3296–3305 (2008).
    [Crossref] [PubMed]
  6. E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
    [Crossref] [PubMed]
  7. M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
    [Crossref] [PubMed]
  8. Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based optofluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Act. B 98(2–3), 356–367 (2004).
    [Crossref]
  9. J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
    [Crossref] [PubMed]
  10. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3, 40–45 (2003).
    [Crossref]
  11. J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Act. B 99, 615–622 (2004).
    [Crossref]
  12. K. J. Liu and T. H. Wang, “Cylindrical illumination confocal spectroscopy: rectifying the limitations of confocal single molecule spectroscopy through one-dimensional beam shaping,” Biophys. J. 95(6), 2964–2975 (2008).
    [Crossref] [PubMed]
  13. H. Farhoosh, M. R. Feldman, S. H. Lee, C. C. Guest, Y. Fainman, and R. Eschbach, “Comparison of binary encoding schemes for electron-beam fabrication of computer generated holograms,” Appl. Opt. 26(20), 4361–4372 (1987).
    [Crossref] [PubMed]
  14. H. J. Tiziani, R. Achi, R. N. Kramer, and L. Wiegers, “Theoretical analysis of confocal microscopy with microlenses,” Appl. Opt. 35(1), 120–125 (1996).
    [Crossref] [PubMed]
  15. D. Psaltis, E. G. Paek, and S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698 (1984).
  16. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  17. B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
    [Crossref]
  18. E. Schonbrun, W. N. Ye, and K. B. Crozier, “Scanning microscopy using a short-focal-length Fresnel zone plate,” Opt. Lett. 34(14), 2228–2230 (2009).
    [Crossref] [PubMed]
  19. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle imaging velocimetry system for microfludics,” Exp. Fluids 25(4), 316–319 (1998).
    [Crossref]
  20. M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
    [Crossref] [PubMed]
  21. M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
    [Crossref] [PubMed]
  22. D. Di Carlo, “Inertial microfluidics,” Lab Chip 9(21), 3038–3046 (2009).
    [Crossref] [PubMed]

2010 (1)

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[Crossref] [PubMed]

2009 (3)

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[Crossref] [PubMed]

E. Schonbrun, W. N. Ye, and K. B. Crozier, “Scanning microscopy using a short-focal-length Fresnel zone plate,” Opt. Lett. 34(14), 2228–2230 (2009).
[Crossref] [PubMed]

D. Di Carlo, “Inertial microfluidics,” Lab Chip 9(21), 3038–3046 (2009).
[Crossref] [PubMed]

2008 (3)

K. J. Liu and T. H. Wang, “Cylindrical illumination confocal spectroscopy: rectifying the limitations of confocal single molecule spectroscopy through one-dimensional beam shaping,” Biophys. J. 95(6), 2964–2975 (2008).
[Crossref] [PubMed]

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

J. F. Dishinger and R. T. Kennedy, “Multiplexed detection and applications for separations on parallel microchips,” Electrophoresis 29(16), 3296–3305 (2008).
[Crossref] [PubMed]

2006 (2)

C. Simonnet and A. Groisman, “High-throughput and high-resolution flow cytometry in molded microfluidic devices,” Anal. Chem. 78(16), 5653–5663 (2006).
[Crossref] [PubMed]

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
[Crossref]

2004 (2)

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based optofluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Act. B 98(2–3), 356–367 (2004).
[Crossref]

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Act. B 99, 615–622 (2004).
[Crossref]

2003 (1)

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3, 40–45 (2003).
[Crossref]

2001 (2)

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[Crossref] [PubMed]

D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 73, 5334–5338 (2001).

2000 (1)

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[Crossref] [PubMed]

1999 (1)

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

1998 (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle imaging velocimetry system for microfludics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

1996 (1)

1987 (1)

1984 (1)

D. Psaltis, E. G. Paek, and S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698 (1984).

Abate, A. R.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[Crossref] [PubMed]

Achi, R.

Adrian, R. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle imaging velocimetry system for microfludics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Anderson, G. P.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[Crossref] [PubMed]

Ateya, D. A.

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

Beebe, D. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle imaging velocimetry system for microfludics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Bilenberg, B.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
[Crossref]

Blom, H.

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[Crossref] [PubMed]

Bøggild, P.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
[Crossref]

Brinkmeier, M.

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

Camou, S.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3, 40–45 (2003).
[Crossref]

Chabinyc, M. L.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[Crossref] [PubMed]

Chiu, D. T.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[Crossref] [PubMed]

Christian, J. F.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[Crossref] [PubMed]

Crozier, K. B.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[Crossref] [PubMed]

E. Schonbrun, W. N. Ye, and K. B. Crozier, “Scanning microscopy using a short-focal-length Fresnel zone plate,” Opt. Lett. 34(14), 2228–2230 (2009).
[Crossref] [PubMed]

Culbertson, C. T.

D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 73, 5334–5338 (2001).

Di Carlo, D.

D. Di Carlo, “Inertial microfluidics,” Lab Chip 9(21), 3038–3046 (2009).
[Crossref] [PubMed]

Dishinger, J. F.

J. F. Dishinger and R. T. Kennedy, “Multiplexed detection and applications for separations on parallel microchips,” Electrophoresis 29(16), 3296–3305 (2008).
[Crossref] [PubMed]

Dorre, K.

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

Eigen, M.

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

Erickson, J. S.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[Crossref] [PubMed]

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

Eschbach, R.

Fainman, Y.

Farhoosh, H.

Feldman, M. R.

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3, 40–45 (2003).
[Crossref]

Fujita, H.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3, 40–45 (2003).
[Crossref]

Golden, J. P.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[Crossref] [PubMed]

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

Gösch, M.

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[Crossref] [PubMed]

Groisman, A.

C. Simonnet and A. Groisman, “High-throughput and high-resolution flow cytometry in molded microfluidic devices,” Anal. Chem. 78(16), 5653–5663 (2006).
[Crossref] [PubMed]

Guest, C. C.

Heino, T.

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[Crossref] [PubMed]

Hilliard, L. R.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[Crossref] [PubMed]

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

Holm, J.

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[Crossref] [PubMed]

Howell, P. B.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[Crossref] [PubMed]

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

Jacobsen, S.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
[Crossref]

Jacobson, S. C.

D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 73, 5334–5338 (2001).

Karger, A. M.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[Crossref] [PubMed]

Kennedy, R. T.

J. F. Dishinger and R. T. Kennedy, “Multiplexed detection and applications for separations on parallel microchips,” Electrophoresis 29(16), 3296–3305 (2008).
[Crossref] [PubMed]

Kim, J. S.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[Crossref] [PubMed]

Kramer, R. N.

Kristensen, A.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
[Crossref]

Kurabayashi, K.

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based optofluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Act. B 98(2–3), 356–367 (2004).
[Crossref]

Lee, L. P.

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Act. B 99, 615–622 (2004).
[Crossref]

Lee, S. H.

Ligler, F. S.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[Crossref] [PubMed]

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

Lin, C. T.

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based optofluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Act. B 98(2–3), 356–367 (2004).
[Crossref]

Liu, K. J.

K. J. Liu and T. H. Wang, “Cylindrical illumination confocal spectroscopy: rectifying the limitations of confocal single molecule spectroscopy through one-dimensional beam shaping,” Biophys. J. 95(6), 2964–2975 (2008).
[Crossref] [PubMed]

McDonald, J. C.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[Crossref] [PubMed]

Meinhart, C. D.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle imaging velocimetry system for microfludics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Nasir, M.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[Crossref] [PubMed]

Paek, E. G.

D. Psaltis, E. G. Paek, and S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698 (1984).

Psaltis, D.

D. Psaltis, E. G. Paek, and S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698 (1984).

Ramsey, J. M.

D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 73, 5334–5338 (2001).

Rigler, R.

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[Crossref] [PubMed]

Santiago, J. G.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle imaging velocimetry system for microfludics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Schmidt, M. S.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
[Crossref]

Schonbrun, E.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[Crossref] [PubMed]

E. Schonbrun, W. N. Ye, and K. B. Crozier, “Scanning microscopy using a short-focal-length Fresnel zone plate,” Opt. Lett. 34(14), 2228–2230 (2009).
[Crossref] [PubMed]

Schrum, D. P.

D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 73, 5334–5338 (2001).

Seo, J.

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Act. B 99, 615–622 (2004).
[Crossref]

Shi, P.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
[Crossref]

Simonnet, C.

C. Simonnet and A. Groisman, “High-throughput and high-resolution flow cytometry in molded microfluidic devices,” Anal. Chem. 78(16), 5653–5663 (2006).
[Crossref] [PubMed]

Skerlos, S. J.

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based optofluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Act. B 98(2–3), 356–367 (2004).
[Crossref]

Skjolding, L. H. D.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
[Crossref]

Steinvurzel, P. E.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[Crossref] [PubMed]

Stephan, J.

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

Stroock, A. D.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[Crossref] [PubMed]

Tegenfeldt, J. O.

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
[Crossref]

Tiziani, H. J.

Tung, Y. C.

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based optofluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Act. B 98(2–3), 356–367 (2004).
[Crossref]

Venkatesh, S. S.

D. Psaltis, E. G. Paek, and S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698 (1984).

Wang, T. H.

K. J. Liu and T. H. Wang, “Cylindrical illumination confocal spectroscopy: rectifying the limitations of confocal single molecule spectroscopy through one-dimensional beam shaping,” Biophys. J. 95(6), 2964–2975 (2008).
[Crossref] [PubMed]

Weitz, D. A.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[Crossref] [PubMed]

Wereley, S. T.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle imaging velocimetry system for microfludics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Whitesides, G. M.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[Crossref] [PubMed]

Wiegers, L.

Ye, W. N.

Zhang, M.

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based optofluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Act. B 98(2–3), 356–367 (2004).
[Crossref]

Anal. Bioanal. Chem. (1)

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

Anal. Chem. (5)

D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 73, 5334–5338 (2001).

C. Simonnet and A. Groisman, “High-throughput and high-resolution flow cytometry in molded microfluidic devices,” Anal. Chem. 78(16), 5653–5663 (2006).
[Crossref] [PubMed]

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[Crossref] [PubMed]

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[Crossref] [PubMed]

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

Appl. Opt. (2)

Biophys. J. (1)

K. J. Liu and T. H. Wang, “Cylindrical illumination confocal spectroscopy: rectifying the limitations of confocal single molecule spectroscopy through one-dimensional beam shaping,” Biophys. J. 95(6), 2964–2975 (2008).
[Crossref] [PubMed]

Electrophoresis (1)

J. F. Dishinger and R. T. Kennedy, “Multiplexed detection and applications for separations on parallel microchips,” Electrophoresis 29(16), 3296–3305 (2008).
[Crossref] [PubMed]

Exp. Fluids (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle imaging velocimetry system for microfludics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Lab Chip (4)

D. Di Carlo, “Inertial microfluidics,” Lab Chip 9(21), 3038–3046 (2009).
[Crossref] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[Crossref] [PubMed]

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[Crossref] [PubMed]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3, 40–45 (2003).
[Crossref]

Micro. Eng. (1)

B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006).
[Crossref]

Opt. Eng. (1)

D. Psaltis, E. G. Paek, and S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698 (1984).

Opt. Lett. (1)

Sens. Act. B (2)

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Act. B 99, 615–622 (2004).
[Crossref]

Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based optofluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Act. B 98(2–3), 356–367 (2004).
[Crossref]

Other (2)

H. M. Shapiro, Practical Flow Cytometry, 3rd ed. (Wiley-Liss, 1995).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics