Abstract

We developed a nonlinear optical infrared microscope exploiting a thermally induced refractive index change in the mid-infrared regime and imaged a single biological cell with high spatial resolution that was not possible in conventional infrared microscopes. A refractive index change of a sample induced by infrared (~3.5 μm) absorption was probed by a visible (633 nm) laser beam. Thus the chemical specificity stems from the spectral absorbance of specimen and the spatial resolution from the short wavelength visible radiation. A reflecting objective (NA0.5) was used to focus the infrared and visible beams on the sample plane, and the sample was raster-scanned for 2-D imaging. The high resolution beyond the infrared diffraction limit was demonstrated by imaging fine grating lines made up of epoxy grooves (830 lines/mm). The probe wavelength dependence of the spatial resolution was investigated by imaging polystyrene beads. We found that the resolution was as small as 0.7 μm with 633 nm probe wavelength.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Wetzel and S. M. LeVine, “Imaging molecular chemistry with infrared microscopy,” Science 285(5431), 1224–1225 (1999).
    [CrossRef] [PubMed]
  2. J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
    [CrossRef]
  3. R. Mendelsohn, E. P. Paschalis, and A. L. Boskey, “Infrared Spectroscopy, Microscopy, and Microscopic Imaging of Mineralizing Tissues: Spectra-Structure Correlations from Human Iliac Crest Biopsies,” J. Biomed. Opt. 4(1), 14–21 (1999).
    [CrossRef]
  4. M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
    [CrossRef] [PubMed]
  5. E. Hecht, Optics (Addison-Wesley, New York, 2001).
    [PubMed]
  6. P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
    [CrossRef] [PubMed]
  7. C. A. Michaels, “Mid-infrared imaging with a solid immersion lens and broadband laser source,” Appl. Phys. Lett. 90(12), 121131 (2007).
    [CrossRef]
  8. D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77(14), 2109–2111 (2000).
    [CrossRef]
  9. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
    [CrossRef]
  10. M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instr. and Meth. B 144(1-4), 246–255 (1998).
    [CrossRef]
  11. E. S. Lee and J. Y. Lee, “Nonlinear optical infrared microscopy with chemical specificity,” Appl. Phys. Lett. 94(26), 261101 (2009).
    [CrossRef]
  12. L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, and K. Polgár, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt. 5(5), S280–S283 (2003).
    [CrossRef]
  13. P. P. Banerjee, R. M. Misra, and M. Maghraoui, “Theoretical and experimental studies of propagation of beams through a finite sample of a cubically nonlinear material,” J. Opt. Soc. Am. B 8(5), 1072–1080 (1991).
    [CrossRef]
  14. L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
    [CrossRef] [PubMed]
  15. Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
    [CrossRef] [PubMed]

2009 (1)

E. S. Lee and J. Y. Lee, “Nonlinear optical infrared microscopy with chemical specificity,” Appl. Phys. Lett. 94(26), 261101 (2009).
[CrossRef]

2007 (1)

C. A. Michaels, “Mid-infrared imaging with a solid immersion lens and broadband laser source,” Appl. Phys. Lett. 90(12), 121131 (2007).
[CrossRef]

2006 (4)

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[CrossRef] [PubMed]

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[CrossRef] [PubMed]

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[CrossRef] [PubMed]

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
[CrossRef] [PubMed]

2003 (1)

L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, and K. Polgár, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt. 5(5), S280–S283 (2003).
[CrossRef]

2002 (1)

J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
[CrossRef]

2000 (1)

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77(14), 2109–2111 (2000).
[CrossRef]

1999 (3)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

R. Mendelsohn, E. P. Paschalis, and A. L. Boskey, “Infrared Spectroscopy, Microscopy, and Microscopic Imaging of Mineralizing Tissues: Spectra-Structure Correlations from Human Iliac Crest Biopsies,” J. Biomed. Opt. 4(1), 14–21 (1999).
[CrossRef]

D. L. Wetzel and S. M. LeVine, “Imaging molecular chemistry with infrared microscopy,” Science 285(5431), 1224–1225 (1999).
[CrossRef] [PubMed]

1998 (1)

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instr. and Meth. B 144(1-4), 246–255 (1998).
[CrossRef]

1991 (1)

P. P. Banerjee, R. M. Misra, and M. Maghraoui, “Theoretical and experimental studies of propagation of beams through a finite sample of a cubically nonlinear material,” J. Opt. Soc. Am. B 8(5), 1072–1080 (1991).
[CrossRef]

Almási, G.

L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, and K. Polgár, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt. 5(5), S280–S283 (2003).
[CrossRef]

Banerjee, P. P.

P. P. Banerjee, R. M. Misra, and M. Maghraoui, “Theoretical and experimental studies of propagation of beams through a finite sample of a cubically nonlinear material,” J. Opt. Soc. Am. B 8(5), 1072–1080 (1991).
[CrossRef]

Boskey, A. L.

R. Mendelsohn, E. P. Paschalis, and A. L. Boskey, “Infrared Spectroscopy, Microscopy, and Microscopic Imaging of Mineralizing Tissues: Spectra-Structure Correlations from Human Iliac Crest Biopsies,” J. Biomed. Opt. 4(1), 14–21 (1999).
[CrossRef]

Chalmers, J. M.

J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
[CrossRef]

Cheng, J. X.

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
[CrossRef] [PubMed]

Crocombe, R.

J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
[CrossRef]

Crozier, K. B.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77(14), 2109–2111 (2000).
[CrossRef]

Diem, M.

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[CrossRef] [PubMed]

Dokholyan, N. V.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instr. and Meth. B 144(1-4), 246–255 (1998).
[CrossRef]

Dumas, P.

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[CrossRef] [PubMed]

Erramilli, S.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instr. and Meth. B 144(1-4), 246–255 (1998).
[CrossRef]

Everall, N. J.

J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
[CrossRef]

Fletcher, D. A.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77(14), 2109–2111 (2000).
[CrossRef]

Fu, Y.

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
[CrossRef] [PubMed]

Goodson, K. E.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77(14), 2109–2111 (2000).
[CrossRef]

Hebling, J.

L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, and K. Polgár, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt. 5(5), S280–S283 (2003).
[CrossRef]

Hong, M. K.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instr. and Meth. B 144(1-4), 246–255 (1998).
[CrossRef]

Huie, P.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instr. and Meth. B 144(1-4), 246–255 (1998).
[CrossRef]

Jennings, M.

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[CrossRef] [PubMed]

Jeung, A. G.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instr. and Meth. B 144(1-4), 246–255 (1998).
[CrossRef]

Keilmann, F.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Kidder, L. H.

J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
[CrossRef]

Kino, G. S.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77(14), 2109–2111 (2000).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Lasch, P.

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[CrossRef] [PubMed]

Lee, E. S.

E. S. Lee and J. Y. Lee, “Nonlinear optical infrared microscopy with chemical specificity,” Appl. Phys. Lett. 94(26), 261101 (2009).
[CrossRef]

Lee, J. Y.

E. S. Lee and J. Y. Lee, “Nonlinear optical infrared microscopy with chemical specificity,” Appl. Phys. Lett. 94(26), 261101 (2009).
[CrossRef]

Levin, I. W.

J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
[CrossRef]

LeVine, S. M.

D. L. Wetzel and S. M. LeVine, “Imaging molecular chemistry with infrared microscopy,” Science 285(5431), 1224–1225 (1999).
[CrossRef] [PubMed]

Lewis, E. N.

J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
[CrossRef]

Maghraoui, M.

P. P. Banerjee, R. M. Misra, and M. Maghraoui, “Theoretical and experimental studies of propagation of beams through a finite sample of a cubically nonlinear material,” J. Opt. Soc. Am. B 8(5), 1072–1080 (1991).
[CrossRef]

Mendelsohn, R.

R. Mendelsohn, E. P. Paschalis, and A. L. Boskey, “Infrared Spectroscopy, Microscopy, and Microscopic Imaging of Mineralizing Tissues: Spectra-Structure Correlations from Human Iliac Crest Biopsies,” J. Biomed. Opt. 4(1), 14–21 (1999).
[CrossRef]

Michaels, C. A.

C. A. Michaels, “Mid-infrared imaging with a solid immersion lens and broadband laser source,” Appl. Phys. Lett. 90(12), 121131 (2007).
[CrossRef]

Miller, L. M.

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[CrossRef] [PubMed]

Misra, R. M.

P. P. Banerjee, R. M. Misra, and M. Maghraoui, “Theoretical and experimental studies of propagation of beams through a finite sample of a cubically nonlinear material,” J. Opt. Soc. Am. B 8(5), 1072–1080 (1991).
[CrossRef]

Mohlenhoff, B.

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[CrossRef] [PubMed]

Naumann, D.

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[CrossRef] [PubMed]

Palanker, D. V.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77(14), 2109–2111 (2000).
[CrossRef]

Pálfalvi, L.

L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, and K. Polgár, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt. 5(5), S280–S283 (2003).
[CrossRef]

Paschalis, E. P.

R. Mendelsohn, E. P. Paschalis, and A. L. Boskey, “Infrared Spectroscopy, Microscopy, and Microscopic Imaging of Mineralizing Tissues: Spectra-Structure Correlations from Human Iliac Crest Biopsies,” J. Biomed. Opt. 4(1), 14–21 (1999).
[CrossRef]

Péter, Á.

L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, and K. Polgár, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt. 5(5), S280–S283 (2003).
[CrossRef]

Polgár, K.

L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, and K. Polgár, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt. 5(5), S280–S283 (2003).
[CrossRef]

Quate, C. F.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77(14), 2109–2111 (2000).
[CrossRef]

Romeo, M.

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[CrossRef] [PubMed]

Schaeberle, M. D.

J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
[CrossRef]

Schwettman, H. A.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instr. and Meth. B 144(1-4), 246–255 (1998).
[CrossRef]

Shi, R.

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
[CrossRef] [PubMed]

Simanovskii, D.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77(14), 2109–2111 (2000).
[CrossRef]

Smith, T. I.

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instr. and Meth. B 144(1-4), 246–255 (1998).
[CrossRef]

Wang, H.

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
[CrossRef] [PubMed]

Wetzel, D. L.

D. L. Wetzel and S. M. LeVine, “Imaging molecular chemistry with infrared microscopy,” Science 285(5431), 1224–1225 (1999).
[CrossRef] [PubMed]

Wilson, J.

J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

C. A. Michaels, “Mid-infrared imaging with a solid immersion lens and broadband laser source,” Appl. Phys. Lett. 90(12), 121131 (2007).
[CrossRef]

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77(14), 2109–2111 (2000).
[CrossRef]

E. S. Lee and J. Y. Lee, “Nonlinear optical infrared microscopy with chemical specificity,” Appl. Phys. Lett. 94(26), 261101 (2009).
[CrossRef]

Biochim. Biophys. Acta (3)

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[CrossRef] [PubMed]

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[CrossRef] [PubMed]

M. Romeo, B. Mohlenhoff, M. Jennings, and M. Diem, “Infrared micro-spectroscopic studies of epithelial cells,” Biochim. Biophys. Acta 1758(7), 915–922 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

R. Mendelsohn, E. P. Paschalis, and A. L. Boskey, “Infrared Spectroscopy, Microscopy, and Microscopic Imaging of Mineralizing Tissues: Spectra-Structure Correlations from Human Iliac Crest Biopsies,” J. Biomed. Opt. 4(1), 14–21 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, and K. Polgár, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt. 5(5), S280–S283 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

P. P. Banerjee, R. M. Misra, and M. Maghraoui, “Theoretical and experimental studies of propagation of beams through a finite sample of a cubically nonlinear material,” J. Opt. Soc. Am. B 8(5), 1072–1080 (1991).
[CrossRef]

Nature (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Nucl. Instr. and Meth. B (1)

M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instr. and Meth. B 144(1-4), 246–255 (1998).
[CrossRef]

Opt. Express (1)

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
[CrossRef] [PubMed]

Science (1)

D. L. Wetzel and S. M. LeVine, “Imaging molecular chemistry with infrared microscopy,” Science 285(5431), 1224–1225 (1999).
[CrossRef] [PubMed]

Vib. Spectrosc. (1)

J. M. Chalmers, N. J. Everall, M. D. Schaeberle, I. W. Levin, E. N. Lewis, L. H. Kidder, J. Wilson, and R. Crocombe, “FT-IR imaging of polymers: an industrial appraisal,” Vib. Spectrosc. 30(1), 43–52 (2002).
[CrossRef]

Other (1)

E. Hecht, Optics (Addison-Wesley, New York, 2001).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Deflection of a probe beam by thermally induced refractive index change. (b) Basic layout of NLIR microscope: FL, focusing lens; CL, condenser lens; X-Y, 2D translator; CH, optical chopper; AP, aperture; BP, bandpass filter; PD, photodiode.

Fig. 3
Fig. 3

NLIR images of polystyrene beads of 1 μm diameter measured with probe wavelengths 633 nm (a) and 1064 nm (b). The MIR wavelength was 3.3 μm for both images, which corresponds to aromatic CH vibrational modes of polystyrene. Below the figures are the line intensity profiles measured across the bead indicated by arrows.

Fig. 2
Fig. 2

NLIR images of gratings with 600 lines/mm (a) and 830 lines/mm (b). (c) Bright field image of the 830 lines/mm grating. The contrast of NLIR image comes from the signal of CH vibrational modes whereas that of bright field image from refractive index difference. The intensity profiles along a direction that is perpendicular to the grating lines are plotted below the two 830 lines/mm grating images.

Fig. 4
Fig. 4

(a) Bright field image and (b) FTIR image of a pre-adipocyte 3T3-L1, which were measured by a commercial FTIR microscope. (c) FTIR spectrum measured at a specific location marked with a red cross in the bright field image. The FTIR image was obtained at 2850 cm−1 corresponding to the CH vibrational modes indicated by a vertical line in (c).

Fig. 5
Fig. 5

(a-b) NLIR images of a pre-adipocyte 3T3-L1 that were measured with MIR 3.5 μm (a) and 3.0 μm (b), respectively. The probe wavelength was 633 nm for both cases. The average powers for the MIR and the probe laser were 5 μW and 30 μW, respectively. The objective lens of NA0.5 was used. The images can be regarded as projections through the cell because the depth of focus is about 4 μm and the typical cell thickness is less than 5 μm. The field of view is 30 μm x 30 μm. (c) DIC image of 3T3-L1 pre-adipocytes for comparison with the NLIR images. It was measured by a refracting objective with NA0.95 (Olympus, UPlanSApo 40X).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( r , z ) = n 2 I ( r , z ) , with n 2 = 0.03 α λ ( d n / d T ) ω 2 / κ ,

Metrics