Abstract

Peculiar enhanced backscattering of light as well as selective vapor sensing were recently observed in a layered plasmonic nanocomposite which consisted of gold nanospheres randomly distributed in a sol-gel glass thin film on top of a soda-lime glass substrate, including a buried leaky waveguide. In order to understand the underlying physical mechanisms, we performed three-dimensional transfer-matrix numerical simulations and calculated the reflectance in both backward and specular directions as functions of the incidence angle. First, assuming a layered periodic particle arrangement, we confirmed that backscattering took place at grazing incidence if the spatial period in the layers was chosen within an optimal range, in agreement with theoretical predictions. Then, using a pseudo-random particle arrangement to describe the actual nanocomposite, we revealed that strong backscattering could nevertheless persist for specific particle distributions, in spite of their randomness. This behavior was tentatively explained by putting backscattering in relation with the particle interdistance statistics. Finally, we showed that backscattered reflectance was much more sensitive than specular reflectance to the adsorption of water vapor either on the surface or inside the likely porous structure of the glass host.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, New-York, 2007).
  4. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  6. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length and sensing capabilities of the loacalized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
    [CrossRef]
  7. T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
    [CrossRef]
  8. S. Szunerits, M. R. Das, and R. Boukherroub, “Short- and long-range sensing on gold nanostructures, deposited on glass, coated with silicon oxide films of different thicknesses,” J. Chem. Phys. C 112(22), 8239–8243 (2008).
    [CrossRef]
  9. S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
    [CrossRef]
  10. M. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
    [CrossRef] [PubMed]
  11. P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985).
    [CrossRef] [PubMed]
  12. F. Pincemin, A. Sentennac, and J.-J. Greffet, “Backscattering enhancement by subsurface particles,” Opt. Commun. 114(1-2), 13–17 (1995).
    [CrossRef]
  13. A. V. Zayats, I. I. Smolyaninov, and A. A. Mardudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  14. J.-J. Greffet, “Backscattering of s-polarized light from cloud of small particles above a dielectric substrate,” Waves Random Media 1(3), 65–73 (1991).
    [CrossRef]
  15. M. Beresna, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, and P. G. Kazansky, “Poling-assisted fabrication of plasmonic nanocomposite devices in glass,” Adv. Mater. 22(39), 4368–4372 (2010).
    [CrossRef] [PubMed]
  16. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
    [CrossRef]
  17. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
    [CrossRef]
  18. J.-Y. Li, Y.-L. Hua, J.-X. Fu, and Z.-Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107(7), 073101 (2010).
    [CrossRef]
  19. S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65(4), 512–515 (1990).
    [CrossRef] [PubMed]
  20. L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
    [CrossRef] [PubMed]
  21. N. J. Tao, S. Boussaas, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
    [CrossRef]
  22. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
    [CrossRef]
  23. V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
    [CrossRef] [PubMed]

2010 (2)

M. Beresna, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, and P. G. Kazansky, “Poling-assisted fabrication of plasmonic nanocomposite devices in glass,” Adv. Mater. 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

J.-Y. Li, Y.-L. Hua, J.-X. Fu, and Z.-Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107(7), 073101 (2010).
[CrossRef]

2008 (4)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

S. Szunerits, M. R. Das, and R. Boukherroub, “Short- and long-range sensing on gold nanostructures, deposited on glass, coated with silicon oxide films of different thicknesses,” J. Chem. Phys. C 112(22), 8239–8243 (2008).
[CrossRef]

2007 (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Mardudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

2004 (1)

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

2003 (1)

S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
[CrossRef]

2001 (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length and sensing capabilities of the loacalized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

1999 (2)

N. J. Tao, S. Boussaas, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

1997 (2)

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[CrossRef]

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

1995 (1)

F. Pincemin, A. Sentennac, and J.-J. Greffet, “Backscattering enhancement by subsurface particles,” Opt. Commun. 114(1-2), 13–17 (1995).
[CrossRef]

1994 (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[CrossRef]

1991 (1)

J.-J. Greffet, “Backscattering of s-polarized light from cloud of small particles above a dielectric substrate,” Waves Random Media 1(3), 65–73 (1991).
[CrossRef]

1990 (1)

S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65(4), 512–515 (1990).
[CrossRef] [PubMed]

1985 (2)

M. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[CrossRef] [PubMed]

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985).
[CrossRef] [PubMed]

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

Albada, M.

M. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[CrossRef] [PubMed]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Arechabaleta, R. A.

N. J. Tao, S. Boussaas, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Asher, S. A.

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[CrossRef]

Barnes, W. L.

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

Beresna, M.

M. Beresna, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, and P. G. Kazansky, “Poling-assisted fabrication of plasmonic nanocomposite devices in glass,” Adv. Mater. 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Boukherroub, R.

S. Szunerits, M. R. Das, and R. Boukherroub, “Short- and long-range sensing on gold nanostructures, deposited on glass, coated with silicon oxide films of different thicknesses,” J. Chem. Phys. C 112(22), 8239–8243 (2008).
[CrossRef]

Boussaas, S.

N. J. Tao, S. Boussaas, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Carvalho, I. C. S.

M. Beresna, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, and P. G. Kazansky, “Poling-assisted fabrication of plasmonic nanocomposite devices in glass,” Adv. Mater. 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Cheng, S.

S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

D’Agnese, J.

N. J. Tao, S. Boussaas, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Dancil, K.-P. S.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Das, M. R.

S. Szunerits, M. R. Das, and R. Boukherroub, “Short- and long-range sensing on gold nanostructures, deposited on glass, coated with silicon oxide films of different thicknesses,” J. Chem. Phys. C 112(22), 8239–8243 (2008).
[CrossRef]

Deparis, O.

M. Beresna, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, and P. G. Kazansky, “Poling-assisted fabrication of plasmonic nanocomposite devices in glass,” Adv. Mater. 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Feng, Q.

S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
[CrossRef]

Fraden, S.

S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65(4), 512–515 (1990).
[CrossRef] [PubMed]

Fu, J.-X.

J.-Y. Li, Y.-L. Hua, J.-X. Fu, and Z.-Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107(7), 073101 (2010).
[CrossRef]

Ghadiri, M. R.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Greffet, J.-J.

F. Pincemin, A. Sentennac, and J.-J. Greffet, “Backscattering enhancement by subsurface particles,” Opt. Commun. 114(1-2), 13–17 (1995).
[CrossRef]

J.-J. Greffet, “Backscattering of s-polarized light from cloud of small particles above a dielectric substrate,” Waves Random Media 1(3), 65–73 (1991).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Holtz, J. H.

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Hua, Y.-L.

J.-Y. Li, Y.-L. Hua, J.-X. Fu, and Z.-Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107(7), 073101 (2010).
[CrossRef]

Huang, W. L.

N. J. Tao, S. Boussaas, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Jansen, S. A.

S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
[CrossRef]

Käll, M.

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

Kazansky, P. G.

M. Beresna, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, and P. G. Kazansky, “Poling-assisted fabrication of plasmonic nanocomposite devices in glass,” Adv. Mater. 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length and sensing capabilities of the loacalized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Lagendijk, A.

M. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Li, J.-Y.

J.-Y. Li, Y.-L. Hua, J.-X. Fu, and Z.-Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107(7), 073101 (2010).
[CrossRef]

Li, Z.-Y.

J.-Y. Li, Y.-L. Hua, J.-X. Fu, and Z.-Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107(7), 073101 (2010).
[CrossRef]

Lin, V. S.-Y.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length and sensing capabilities of the loacalized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Mardudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Mardudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Maret, G.

S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65(4), 512–515 (1990).
[CrossRef] [PubMed]

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985).
[CrossRef] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Mendez-Alcaraz, J. M.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

Motesharei, K.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Murray, W. A.

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Ong, K.

S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
[CrossRef]

Pang, J.-B.

S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[CrossRef]

Pincemin, F.

F. Pincemin, A. Sentennac, and J.-J. Greffet, “Backscattering enhancement by subsurface particles,” Opt. Commun. 114(1-2), 13–17 (1995).
[CrossRef]

Qiu, K.-Y.

S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
[CrossRef]

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Rojas-Ochoa, L. F.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

Sáenz, J. J.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

Sailor, M. J.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Schatz, G. C.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length and sensing capabilities of the loacalized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Scheffold, F.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

Schurtenberger, P.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

Sentennac, A.

F. Pincemin, A. Sentennac, and J.-J. Greffet, “Backscattering enhancement by subsurface particles,” Opt. Commun. 114(1-2), 13–17 (1995).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Mardudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Szunerits, S.

S. Szunerits, M. R. Das, and R. Boukherroub, “Short- and long-range sensing on gold nanostructures, deposited on glass, coated with silicon oxide films of different thicknesses,” J. Chem. Phys. C 112(22), 8239–8243 (2008).
[CrossRef]

Takahashi, S.

M. Beresna, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, and P. G. Kazansky, “Poling-assisted fabrication of plasmonic nanocomposite devices in glass,” Adv. Mater. 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Tao, N. J.

N. J. Tao, S. Boussaas, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length and sensing capabilities of the loacalized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Wei, Y.

S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Wolf, P. E.

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985).
[CrossRef] [PubMed]

Yin, R.

S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
[CrossRef]

Zayats, A. V.

M. Beresna, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, and P. G. Kazansky, “Poling-assisted fabrication of plasmonic nanocomposite devices in glass,” Adv. Mater. 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Mardudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Adv. Mater. (1)

M. Beresna, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, and P. G. Kazansky, “Poling-assisted fabrication of plasmonic nanocomposite devices in glass,” Adv. Mater. 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Chem. Mater. (1)

S. Cheng, Y. Wei, Q. Feng, K.-Y. Qiu, J.-B. Pang, S. A. Jansen, R. Yin, and K. Ong, “Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates,” Chem. Mater. 15(7), 1560–1566 (2003).
[CrossRef]

Chem. Rev. (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length and sensing capabilities of the loacalized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

J. Appl. Phys. (1)

J.-Y. Li, Y.-L. Hua, J.-X. Fu, and Z.-Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107(7), 073101 (2010).
[CrossRef]

J. Chem. Phys. C (1)

S. Szunerits, M. R. Das, and R. Boukherroub, “Short- and long-range sensing on gold nanostructures, deposited on glass, coated with silicon oxide films of different thicknesses,” J. Chem. Phys. C 112(22), 8239–8243 (2008).
[CrossRef]

J. Mod. Opt. (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[CrossRef]

J. Phys. Chem. C (1)

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Nature (1)

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[CrossRef]

Opt. Commun. (1)

F. Pincemin, A. Sentennac, and J.-J. Greffet, “Backscattering enhancement by subsurface particles,” Opt. Commun. 114(1-2), 13–17 (1995).
[CrossRef]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Mardudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. B (1)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Phys. Rev. Lett. (4)

S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65(4), 512–515 (1990).
[CrossRef] [PubMed]

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

M. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[CrossRef] [PubMed]

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

N. J. Tao, S. Boussaas, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70(12), 4656–4660 (1999).
[CrossRef]

Science (1)

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Waves Random Media (1)

J.-J. Greffet, “Backscattering of s-polarized light from cloud of small particles above a dielectric substrate,” Waves Random Media 1(3), 65–73 (1991).
[CrossRef]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, New-York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Plasmonic nanocomposite sample and models. (a) Transmission electron microscopy image of the sample cross-section showing Au particles in a thin sol-gel film on top of a glass substrate whose refractive index was reduced beneath the film as a result of poling-induced ion depletion and formation of void-like nanostructures. (b) Periodic nanocomposite model (cross-sectional view). (c) Pseudo-random nanocomposite model (cross-sectional view). (d) Approximation of spherical Au particles by stacks of five cylinders for numerical computation purposes. (e) In the periodic model (top view), square array layers are alternately shifted by half a period in both lateral directions. (f) In the pseudo-random model, particle are taken randomly in a super-cell box whose dimensions are integer multiples of the particle diameter.

Fig. 2
Fig. 2

Reflectance of periodic gold nanoparticle arrangements with periods varying from a = 180 nm to 230 nm. (a) Backscattered reflectance angular spectra (logarithmic scale) for periods ranging from a = 180 nm to 185 nm. (b) Backscattered reflectance angular spectra for periods ranging from a = 190 nm to 230 nm. (c) Specular reflectance angular spectra for periods ranging from a = 180 nm to 230 nm (gold filling factor f calculated by Eq. (1) is indicated between parentheses). (d) Backscattered reflectance at resonance angle θ = 80.6° as function of the period.

Fig. 3
Fig. 3

Reflectance of 12 statistical realizations of pseudo-random gold nanoparticle arrangements (gold volume filling factor f calculated by Eq. (2) is 2.3%). (a) Specular reflectance angular spectra. (b) Backscattered reflectance angular spectra.

Fig. 4
Fig. 4

Statistics of particle distribution for pseudo random gold nanoparticle arrangements leading to highest (upper charts) and lowest (lower charts) backscattering according to Fig. 3. (a) 3D particle distributions in the super-cell of the film. (b) 2D particle distributions in 9 super-cells of the first layer of particles (super-cell highlighted in red). (c) Histograms of the 2D particle interdistance computed from (b).

Fig. 5
Fig. 5

Sensitivity of plasmonic nanocomposite models to water adsorption on external surface (top graphs, periodic model, dads : thickness of water layer) or inside pores of host glass (bottom graphs, pseudo-random model giving highest backscattering, dads: thickness of porous nanocomposite layer). (a,d) Specular reflectance spectra. (b,e) Backscattered reflectance spectra. (c,f) Backscattered reflectance at resonance angle θ = 80.6° as function of dads .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f p e r i o d i c = 4 π b 3 3 a 2 d .
f r a n d o m = N π b 3 6 a 2 d = N π b 6 m 2 d .

Metrics