Abstract

The lateral shifts from a slab of lossy chiral metamaterial are predicted for both perpendicular and parallel components of the reflected field, when the transverse electric (TE)-polarized incident wave is applied. By introducing different chirality parameter, the lateral shifts can be large positive or negative near the pseudo-Brewster angle. It is found that the lateral shifts from the negative chiral slab are affected by the angle of incidence and the chirality parameter. In the presence of inevitable loss of the chiral slab, the enhanced lateral shifts will be decreased, and the pseudo-Brewster angle will disappear correspondingly. For the negative chiral slab with loss which is invisible for the right circularly polarized (RCP) wave, we find that the loss of the chiral slab will lead to the fluctuation of the lateral shift with respect to the thickness of the chiral slab. The validity of the stationary-phase analysis is demonstrated by numerical simulations of a Gaussian-shaped beam.

© 2011 OSA

Full Article  |  PDF Article
Related Articles
Electromagnetic wave propagation through a dielectric–chiral interface and through a chiral slab

S. Bassiri, C. H. Papas, and N. Engheta
J. Opt. Soc. Am. A 5(9) 1450-1459 (1988)

Band-gap structure for periodic chiral media

Kevin M. Flood and Dwight L. Jaggard
J. Opt. Soc. Am. A 13(7) 1395-1406 (1996)

References

  • View by:
  • |
  • |
  • |

  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947).
    [Crossref]
  2. K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2, 87–102 (1948).
    [Crossref]
  3. R. H. Renard, “Total reflection: a new evaluation of the Goos-Hänchen shift,” J. Opt. Soc. Am. 54, 1190–1196 (1964).
    [Crossref]
  4. B. R. Horowitz and T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am. 61, 586–594 (1971).
    [Crossref]
  5. F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
    [Crossref] [PubMed]
  6. O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
    [Crossref] [PubMed]
  7. B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
    [Crossref]
  8. A. Madrazo and M. Nieto-Veperinas, “Detection of subwavelength Goos-Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995).
    [Crossref] [PubMed]
  9. L. G. Wang, H. Chen, N. H. Liu, and S. Y. Zhu, “Negative and positive lateral shift of a light beam reflected from a grounded slab,” Opt. Lett. 31, 1124–1126 (2006).
    [Crossref] [PubMed]
  10. C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 (2003).
    [Crossref] [PubMed]
  11. M. Merano, A. Aiello, C. W. Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 (2007).
    [Crossref] [PubMed]
  12. D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).
  13. R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).
  14. F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
    [Crossref]
  15. W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
    [Crossref]
  16. W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982).
    [Crossref]
  17. E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
    [Crossref] [PubMed]
  18. B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17, 21433–21441 (2009).
    [Crossref] [PubMed]
  19. F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
    [Crossref]
  20. P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002).
    [Crossref]
  21. J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
    [Crossref]
  22. A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability”, Electromagnetics 23, 71–75 (2003).
    [Crossref]
  23. D. R. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
    [Crossref] [PubMed]
  24. C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
    [Crossref]
  25. C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
    [Crossref]
  26. S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
    [Crossref] [PubMed]
  27. J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
    [Crossref]
  28. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).
  29. J. F. Dong and B. Liu, “Goos-Hänchen shift at the surface of the chiral negative refraction medium,” Proceedings of the 2008 International workshop on metamaterials, Nanjing, China, 98–101 (2008).
  30. S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5, 1450–1459 (1988).
    [Crossref]
  31. S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab: errata,” J. Opt. Soc. Am. A 7, 2154–2155 (1990).
    [Crossref]
  32. M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977).
    [Crossref]
  33. M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
    [Crossref]
  34. H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
    [Crossref]
  35. Y. Tamayama, T. Nakanishi, K. Sugiyama, and M. Kitano, “An invisible medium for circularly polarized electromagnetic waves,” Opt. Express 16, 20869–20875 (2008).
    [Crossref] [PubMed]
  36. C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004).
    [Crossref]
  37. Y. Jin and S. L. He, “Focusing by a slab of chiral medium,” Opt. Express 13, 4974–4979 (2005).
    [Crossref] [PubMed]
  38. Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73, 113104 (2006).
    [Crossref]
  39. T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
    [Crossref]
  40. C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
    [Crossref]
  41. H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680–682 (2002).
    [Crossref]
  42. K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007).
    [Crossref]
  43. C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
    [Crossref]
  44. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008),
    [Crossref] [PubMed]

2009 (6)

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
[Crossref]

B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17, 21433–21441 (2009).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
[Crossref]

2008 (5)

A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008),
[Crossref] [PubMed]

Y. Tamayama, T. Nakanishi, K. Sugiyama, and M. Kitano, “An invisible medium for circularly polarized electromagnetic waves,” Opt. Express 16, 20869–20875 (2008).
[Crossref] [PubMed]

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
[Crossref]

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
[Crossref]

2007 (5)

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

M. Merano, A. Aiello, C. W. Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 (2007).
[Crossref] [PubMed]

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007).
[Crossref]

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

2006 (2)

2005 (1)

2004 (3)

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[Crossref]

D. R. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004).
[Crossref]

2003 (2)

A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability”, Electromagnetics 23, 71–75 (2003).
[Crossref]

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 (2003).
[Crossref] [PubMed]

2002 (3)

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002).
[Crossref]

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
[Crossref]

H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680–682 (2002).
[Crossref]

1998 (1)

B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
[Crossref]

1996 (1)

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).

1995 (2)

A. Madrazo and M. Nieto-Veperinas, “Detection of subwavelength Goos-Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995).
[Crossref] [PubMed]

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

1993 (1)

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
[Crossref] [PubMed]

1992 (2)

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
[Crossref] [PubMed]

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).

1990 (1)

1988 (1)

1982 (1)

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982).
[Crossref]

1977 (1)

M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977).
[Crossref]

1971 (1)

1964 (1)

1948 (1)

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2, 87–102 (1948).
[Crossref]

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947).
[Crossref]

Aiello, A.

Albuquerque, E. L.

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

Al-Rashed, A. A. R.

B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
[Crossref]

Artmann, K.

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2, 87–102 (1948).
[Crossref]

Bassiri, S.

Berman, P. R.

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002).
[Crossref]

Bliokh, K. Yu.

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007).
[Crossref]

Bliokh, Yu. P.

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007).
[Crossref]

Bonomo, N. E.

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).

Bretenaker, F.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
[Crossref] [PubMed]

Burokur, N.

C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
[Crossref]

Carniglia, C. K.

M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977).
[Crossref]

Chan, S. W.

Chen, H.

Chen, R.

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
[Crossref]

Cheng, M.

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
[Crossref]

Cheng, Q.

Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73, 113104 (2006).
[Crossref]

Costa, J. A. P.

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

Cui, T. J.

Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73, 113104 (2006).
[Crossref]

Depine, R. A.

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).

Dong, J. F.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

J. F. Dong and B. Liu, “Goos-Hänchen shift at the surface of the chiral negative refraction medium,” Proceedings of the 2008 International workshop on metamaterials, Nanjing, China, 98–101 (2008).

Dong, W. T.

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
[Crossref]

Dumelow, T.

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

Dutriaux, L.

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
[Crossref] [PubMed]

Eliel, E. R.

Emile, O.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

Engheta, N.

Fan, Y.

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

Feng, S.

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
[Crossref]

Galstyan, T.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

Gao, L.

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
[Crossref]

B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17, 21433–21441 (2009).
[Crossref] [PubMed]

Giles, C. L.

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982).
[Crossref]

Goos, F.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947).
[Crossref]

Hänchen, H.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947).
[Crossref]

He, S. L.

Hooft, C. W.

Hoppe, D. J.

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).

Horowitz, B. R.

Huang, H.

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

Jin, Y.

Jost, B. M.

B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
[Crossref]

Kafesaki, M.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Kitano, M.

Kong, J. A.

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
[Crossref]

Koschny, T.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Lai, H. M.

Lakhtakia, A.

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
[Crossref]

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[Crossref]

A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability”, Electromagnetics 23, 71–75 (2003).
[Crossref]

Le Floch, A.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
[Crossref] [PubMed]

Li, C. F.

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
[Crossref]

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004).
[Crossref]

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 (2003).
[Crossref] [PubMed]

Li, J. S.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Li, L. W.

C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Lima, F.

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

Lindell, I. V.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

Liu, B.

J. F. Dong and B. Liu, “Goos-Hänchen shift at the surface of the chiral negative refraction medium,” Proceedings of the 2008 International workshop on metamaterials, Nanjing, China, 98–101 (2008).

Liu, N. H.

Lu, X. C.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
[Crossref]

Madrazo, A.

Marseille, A.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
[Crossref] [PubMed]

McGuirk, M.

M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977).
[Crossref]

Merano, M.

Nakanishi, T.

Nieto-Veperinas, M.

Papas, C. H.

Park, Y. S.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Pendry, D. R.

D. R. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

Pfleghaar, E.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
[Crossref] [PubMed]

Qiu, C. W.

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
[Crossref]

C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Rahmat-Samii, Y.

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).

Renard, R. H.

Saleh, B. E. A.

B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
[Crossref]

Sihvola, A. H.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

Soukoulis, C. M.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Sugiyama, K.

Tamayama, Y.

Tamir, T.

Tretyakov, S. A.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

van Exter, M. P.

Viitanen, A. J.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

Wang, F.

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[Crossref]

Wang, L. G.

Wang, N. B.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Wang, Q.

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004).
[Crossref]

Weis, A.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
[Crossref] [PubMed]

Wild, W. J.

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982).
[Crossref]

Woerdman, J. P.

Wu, B. I.

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

Wu, B. K.

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
[Crossref]

Yao, H. Y.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Yeo, S. T.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

Yeo, T. S.

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Zhang, S.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Zhang, W. L.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Zhang, Y.

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
[Crossref]

Zhao, B.

Zhou, J. F.

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Zhu, S. Y.

Zouhdi, S.

C. W. Qiu, N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility effects on energy flow in chiral materials,” J. Opt. Soc. Am. A 25, 53–63 (2008).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

Ann. Phys. (2)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 (1947).
[Crossref]

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 2, 87–102 (1948).
[Crossref]

Appl. Phys. A (1)

H. Huang, Y. Fan, B. I. Wu, and J. A. Kong, “Positively and negatively large Goos-Hänchen lateral displacement from a symmetric gyrotropic slab,” Appl. Phys. A 94, 917–922 (2009).
[Crossref]

Appl. Phys. Lett. (1)

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002).
[Crossref]

Electromagnetics (1)

A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability”, Electromagnetics 23, 71–75 (2003).
[Crossref]

Eur. Phys. J. D (1)

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008).
[Crossref]

Europhys. Lett. (1)

F. Lima, T. Dumelow, J. A. P. Costa, and E. L. Albuquerque, “Lateral shift of far infrared radiation on normal incidence reflection off an antiferromagnet,” Europhys. Lett. 83, 17003 (2008).
[Crossref]

J. Electromagn. Waves Appl. (1)

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 (1992).

J. Opt. Soc. Am (1)

M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am 67, 103–107 (1977).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optik (1)

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 (1996).

Phys. Rev. A (2)

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 (1982).
[Crossref]

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 (2007).
[Crossref]

Phys. Rev. B (5)

Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73, 113104 (2006).
[Crossref]

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic meterials and metamaterials,” Phys. Rev. B 79, 235121 (2009).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, T. S. Yeo, and S. Zouhdi, “Routes to left-handed media by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[Crossref]

J. F. Zhou, J. F. Dong, N. B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[Crossref]

Phys. Rev. E (3)

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 (2004).
[Crossref]

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002).
[Crossref]

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partical reflection and refraction of an electromagnetic wave packet, ” Phys. Rev. E 75, 066609 (2007).
[Crossref]

Phys. Rev. Lett. (6)

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen Shift,” Phys. Rev. Lett. 70, 2281–2284 (1993).
[Crossref] [PubMed]

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 (2003).
[Crossref] [PubMed]

F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
[Crossref] [PubMed]

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75, 1511–1513 (1995).
[Crossref] [PubMed]

B. M. Jost, A. A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys. Rev. Lett. 81, 2233–2235 (1998).
[Crossref]

S. Zhang, Y. S. Park, J. S. Li, X. C. Lu, W. L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Prog. Electromagn. Res., PIER (1)

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Prog. Electromagn. Res., PIER 104, 255–263 (2009).
[Crossref]

Science (1)

D. R. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

Other (2)

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston) (1994).

J. F. Dong and B. Liu, “Goos-Hänchen shift at the surface of the chiral negative refraction medium,” Proceedings of the 2008 International workshop on metamaterials, Nanjing, China, 98–101 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of a light beam propagating through the chiral slab placed in free space.

Fig. 2
Fig. 2

the magnitude of (a) the first and second components in E r (see Eq. (21)) and (b) E r in Eq. (21) and E 2 r in Eq. (22) as a function of x. The relevant parameters are ε = 0.64 + 0.01i, μ = 1 + 0.02i, κ = 2, w0 = 20λ, d = 1.5λ, and θi = 50°.

Fig. 3
Fig. 3

The dependences of the lateral shifts Δ/λ (a,c) and the phases of the reflection coefficients (b,d) for perpendicular (a,b) and parallel components (c,d) on the angle of incidence θi. The insets of (a) and (c) show the absolute values of perpendicular and parallel reflection coefficients, respectively. Solid line and dashed line correspond to positive chiral slab with κ = 0.4 and negative chiral slab with κ = 1.4.

Fig. 4
Fig. 4

(a) Δ/λ and the absolute values of reflection coefficients as a function of θi for a typical negative chiral slab. The inset of (b) is the phase of reflection coefficients.

Fig. 5
Fig. 5

Δ/λ as a function of d of the negative chiral slab for different θi. Reflected perpendicular component for (a) and (b) and reflected parallel component for (c) and (d).

Fig. 6
Fig. 6

The dependence of the lateral shift on the angle of incidence at different absorption scales. (a)μ = 1 + 0.02i, (b)ε = 0.64 + 0.02i.

Fig. 7
Fig. 7

The dependence of the lateral shift on the thickness of an invisible (for RCP wave) chiral slab at different θi.(a,b) lossless chiral slab; (c,d) lossy chiral slab.

Fig. 8
Fig. 8

Dependence of the lateral shift on the incident angle. The theoretical result is shown by the line; the numerical results (for w0 = 20λ) are shown by scatters, all the other optical parameters are the same as in Fig. 3(a).

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

D = ɛ ɛ 0 E + i κ ɛ 0 μ 0 H , B = μ μ 0 H i κ ɛ 0 μ 0 E ,
E i = E i e y = E 0 e y exp [ i k i ( cos θ i z + sin θ i x ) ] , H i = ɛ 0 μ 0 E i ( cos θ i e x + sin θ i e z ) ,
E r = E 0 [ R e y + R ( cos θ i e x sin θ i e z ) ] exp [ i k i ( cos θ i z + sin θ i x ) ] ,
H r = ɛ 0 μ 0 E 0 [ R e y + R ( cos θ i e x + sin θ i e z ) ] exp [ i k i ( cos θ i z + sin θ i x ) ] ,
E c + = E cr + + E cl + and H c + = i η 1 ( E cl + E cr + ) ,
E c = E cr + E cl and H c = i η 1 ( E cl E cr ) ,
E t = E 0 [ T e y + T ( cos θ t e x sin θ t e z ) ] exp [ i k i ( cos θ t z + sin θ t x ) ] ,
H t = ɛ 0 μ 0 E 0 [ T e y + T ( cos θ t e x + sin θ t e z ) ] exp [ i k i ( cos θ t z + sin θ t x ) ] ,
( [ Ψ ] 11 [ Ψ ] 12 [ Ψ ] 21 [ Ψ ] 22 ) ( R R T T ) = ( i η cos θ i + i cos θ 1 i η cos θ i + i cos θ 1 i η cos θ i i cos θ 2 i η cos θ i i cos θ 2 ) ,
[ Ψ ] 11 = ( i ( η cos θ i cos θ 1 ) cos θ i + η cos θ 1 i ( η cos θ i + cos θ 1 ) cos θ i + η cos θ 1 )
[ Ψ ] 21 = ( i ( η cos θ i + cos θ 2 ) cos θ i + η cos θ 2 i ( η cos θ i + cos θ 2 ) cos θ i + η cos θ 2 )
[ Ψ ] 12 = ( i ( η cos θ i + cos θ 1 ) e i ( k i z k 1 z ) d ( cos θ i η cos θ 1 ) e i ( k i z k 1 z ) d i ( η cos θ i + cos θ 1 ) e i ( k i z + k 1 z ) d ( cos θ i η cos θ 1 ) e i ( k i z + k 1 z ) d )
[ Ψ ] 22 = ( i ( η cos θ i + cos θ 2 ) e i ( k i z k 2 z ) d ( cos θ i η cos θ 2 ) e i ( k i z k 2 z ) d i ( η cos θ i cos θ 2 ) e i ( k i z + k 2 z ) d ( cos θ i η cos θ 2 ) e i ( k i z + k 2 z ) d ) .
E i ( x , z = 0 ) = e y A ( k x ) exp ( i k x x ) d k x ,
E r ( x , z = 0 ) = e y R ( k x ) A ( k x ) exp ( i k x x ) d k x [ e x 1 ( k x k 0 ) 2 + e z k x k 0 ] R ( k x ) A ( k x ) exp ( i k x x ) d k x .
ρ j ( k x ) ρ j ( k x 0 ) + Δ k x ρ j ( k x 0 ) , Φ j ( k x ) Φ j ( k x 0 ) + Δ k x Φ j ( k x 0 ) ,
e x 1 ( k x k 0 ) 2 + e z k x k 0 ( e x 1 ( k x 0 k 0 ) 2 + e z k x 0 k 0 ) + Δ k x ( e x 1 k 0 2 k x 0 2 k x 0 k 0 + e z 1 k 0 ) e + Δ k x e 2 .
E r ( x , z = 0 ) = e y E r [ e E r + e 2 E 2 r ] ,
E ( ) r ( x , z = 0 ) = R ( ) ( k x ) A ( k x ) exp ( i k x x ) d k x ,
E 2 r ( x , z = 0 ) = Δ k x R ( k x ) A ( k x ) exp ( i k x x ) d k x .
E ( ) r ( x , z = 0 ) = r ( ) ( k x 0 ) A ( k x ) exp { i k x [ x + Φ ( ) ( k x 0 ) ] } d k x + r ( ) ( k x 0 ) ( k x k x 0 ) A ( k x ) exp { i k x [ x + Φ ( ) ( k x 0 ) ] } d k x ,
E 2 r ( x , z = 0 ) = r ( k x 0 ) ( k x k x 0 ) A ( k x ) exp { i k x [ x + Φ ( k x 0 ) ] } d k x + r ( k x 0 ) ( k x k x 0 ) 2 A ( k x ) exp { i k x [ x + Φ ( k x 0 ) ] } d k x ,
E r ( x , z = 0 ) = e y E r e E r = e y r ( k x 0 ) A ( k x ) exp { i k x [ x + Φ ( k x 0 ) ] } d k x e r ( k x 0 ) A ( k x ) exp { i k x [ x + Φ ( k x 0 ) ] } d k x .
x + Φ ( ) ( k x 0 ) = 0 ,
Δ ( ) = d Φ ( ) ( k x ) d k x | k x 0 .

Metrics