Abstract

Asymmetric light reflectance effect was observed in an anodic aluminum oxide on glass structure. The transmitted light from two sides of the films show the same colors, whereas the reflected light from two sides show complementary colors. The spectra analysis demonstrates that this asymmetric light reflectance effect can be ascribed to the asymmetric geometric structure of nanoscale aluminum networks. This effect may result in applications in many fields, especially in optical communication.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266(5193), 1961–1966 (1994).
    [CrossRef] [PubMed]
  2. J. von Behren, L. Tsybeskov, and P. M. Fauchet, “Preparation and characterization of ultrathin porous silicon films,” Appl. Phys. Lett. 66(13), 1662–1664 (1995).
    [CrossRef]
  3. J. Li, C. Papadopoulos, and J. M. Xu, “Growing Y-junction carbon nanotubes,” Nature 402, 253–254 (1999).
  4. H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, and K. Nishio, “Ordered mosaic nanocomposites in anodic porous alumina,” Adv. Mater. 15(2), 161–164 (2003).
    [CrossRef]
  5. L. Pu, Y. Shi, J. M. Zhu, X. M. Bao, R. Zhang, and Y. D. Zheng, “Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer,” Chem. Commun. (Camb.) (8): 942–943 (2004).
    [CrossRef]
  6. H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porus alumina,” Jpn. J. Appl. Phys. 38(Part 2, No. 12A), L1403–L1405 (1999).
    [CrossRef]
  7. O. Takayama and M. Cada, “Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths,” Appl. Phys. Lett. 85(8), 1311–1313 (2004).
    [CrossRef]
  8. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
    [CrossRef] [PubMed]
  9. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71(19), 2770–2772 (1997).
    [CrossRef]
  10. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13(3), 189–192 (2001).
    [CrossRef]
  11. A.-P. Li, F. Müller, and U. Gösele, “Polycrystalline and Monocrystalline Pore Arrays with. Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3(3), 131–134 (1999).
    [CrossRef]
  12. J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gösele, “Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp,” J. Vac. Sci. Technol. B 21(2), 763–766 (2003).
    [CrossRef]
  13. H. A. Macleod, in Thin film optical filters, (McGrwa-Hill, New York, 1989).
  14. J. D. Rancourt, in Optical thin films. Users Handbook, (McGrwa-Hill, New York, 1987).
  15. A. I. Mahan, “An Early Exact Solution for the Reflectance of Reflection- Increasing and Reflection-Reducing Films,” J. Opt. Soc. Am. 42(4), 259–262 (1952).
    [CrossRef]
  16. A. Suzuki, “Effect of Multiply Charged Ions on the Refractive Index of Titanium Oxide Films and an Application to Decorative Films,” Jpn. J. Appl. Phys. 39(Part 1, No. 3A), 1295–1298 (2000).
  17. P. Yeh, in Optical Waves in Layered Media, (Wiley, New York, 1988).
  18. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
    [CrossRef] [PubMed]
  19. K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, and Y. D. Zheng, “Photoluminescence oscillations in porous alumina films,” Appl. Phys. Lett. 89(20), 201118 (2006).
    [CrossRef]
  20. M. Born, and E. Wolf, in Principles of Optics, (Cambridge, 2003)
  21. H. Masuda and M. Satoh, “Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L126–L129 (1996).
    [CrossRef]
  22. H. Asoh, M. Matsuo, M. Yoshihama, and S. Ono, “Transfer of nanoporous pattern of anodic porous aluimna into Si substrate,” Appl. Phys. Lett. 83(21), 4408–4410 (2003).
    [CrossRef]
  23. P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support,” Electrochem. Solid-State Lett. 6(10), B42–B45 (2003).
    [CrossRef]

2006 (1)

K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, and Y. D. Zheng, “Photoluminescence oscillations in porous alumina films,” Appl. Phys. Lett. 89(20), 201118 (2006).
[CrossRef]

2004 (2)

L. Pu, Y. Shi, J. M. Zhu, X. M. Bao, R. Zhang, and Y. D. Zheng, “Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer,” Chem. Commun. (Camb.) (8): 942–943 (2004).
[CrossRef]

O. Takayama and M. Cada, “Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths,” Appl. Phys. Lett. 85(8), 1311–1313 (2004).
[CrossRef]

2003 (4)

H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, and K. Nishio, “Ordered mosaic nanocomposites in anodic porous alumina,” Adv. Mater. 15(2), 161–164 (2003).
[CrossRef]

J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gösele, “Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp,” J. Vac. Sci. Technol. B 21(2), 763–766 (2003).
[CrossRef]

H. Asoh, M. Matsuo, M. Yoshihama, and S. Ono, “Transfer of nanoporous pattern of anodic porous aluimna into Si substrate,” Appl. Phys. Lett. 83(21), 4408–4410 (2003).
[CrossRef]

P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support,” Electrochem. Solid-State Lett. 6(10), B42–B45 (2003).
[CrossRef]

2002 (1)

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

2001 (1)

H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13(3), 189–192 (2001).
[CrossRef]

1999 (3)

A.-P. Li, F. Müller, and U. Gösele, “Polycrystalline and Monocrystalline Pore Arrays with. Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3(3), 131–134 (1999).
[CrossRef]

J. Li, C. Papadopoulos, and J. M. Xu, “Growing Y-junction carbon nanotubes,” Nature 402, 253–254 (1999).

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porus alumina,” Jpn. J. Appl. Phys. 38(Part 2, No. 12A), L1403–L1405 (1999).
[CrossRef]

1997 (1)

H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71(19), 2770–2772 (1997).
[CrossRef]

1996 (1)

H. Masuda and M. Satoh, “Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L126–L129 (1996).
[CrossRef]

1995 (2)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

J. von Behren, L. Tsybeskov, and P. M. Fauchet, “Preparation and characterization of ultrathin porous silicon films,” Appl. Phys. Lett. 66(13), 1662–1664 (1995).
[CrossRef]

1994 (1)

C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266(5193), 1961–1966 (1994).
[CrossRef] [PubMed]

1952 (1)

A. I. Mahan, “An Early Exact Solution for the Reflectance of Reflection- Increasing and Reflection-Reducing Films,” J. Opt. Soc. Am. 42(4), 259–262 (1952).
[CrossRef]

Abe, A.

H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, and K. Nishio, “Ordered mosaic nanocomposites in anodic porous alumina,” Adv. Mater. 15(2), 161–164 (2003).
[CrossRef]

Asoh, H.

H. Asoh, M. Matsuo, M. Yoshihama, and S. Ono, “Transfer of nanoporous pattern of anodic porous aluimna into Si substrate,” Appl. Phys. Lett. 83(21), 4408–4410 (2003).
[CrossRef]

H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13(3), 189–192 (2001).
[CrossRef]

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porus alumina,” Jpn. J. Appl. Phys. 38(Part 2, No. 12A), L1403–L1405 (1999).
[CrossRef]

H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71(19), 2770–2772 (1997).
[CrossRef]

Bao, X. M.

L. Pu, Y. Shi, J. M. Zhu, X. M. Bao, R. Zhang, and Y. D. Zheng, “Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer,” Chem. Commun. (Camb.) (8): 942–943 (2004).
[CrossRef]

Cada, M.

O. Takayama and M. Cada, “Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths,” Appl. Phys. Lett. 85(8), 1311–1313 (2004).
[CrossRef]

Choi, J.

J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gösele, “Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp,” J. Vac. Sci. Technol. B 21(2), 763–766 (2003).
[CrossRef]

Colavita, P. E.

P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support,” Electrochem. Solid-State Lett. 6(10), B42–B45 (2003).
[CrossRef]

Fattal, D.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Fauchet, P. M.

J. von Behren, L. Tsybeskov, and P. M. Fauchet, “Preparation and characterization of ultrathin porous silicon films,” Appl. Phys. Lett. 66(13), 1662–1664 (1995).
[CrossRef]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Gösele, U.

J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gösele, “Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp,” J. Vac. Sci. Technol. B 21(2), 763–766 (2003).
[CrossRef]

A.-P. Li, F. Müller, and U. Gösele, “Polycrystalline and Monocrystalline Pore Arrays with. Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3(3), 131–134 (1999).
[CrossRef]

Haibach, F. G.

P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support,” Electrochem. Solid-State Lett. 6(10), B42–B45 (2003).
[CrossRef]

Han, P.

K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, and Y. D. Zheng, “Photoluminescence oscillations in porous alumina films,” Appl. Phys. Lett. 89(20), 201118 (2006).
[CrossRef]

Huang, K.

K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, and Y. D. Zheng, “Photoluminescence oscillations in porous alumina films,” Appl. Phys. Lett. 89(20), 201118 (2006).
[CrossRef]

Li, A.-P.

A.-P. Li, F. Müller, and U. Gösele, “Polycrystalline and Monocrystalline Pore Arrays with. Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3(3), 131–134 (1999).
[CrossRef]

Li, J.

J. Li, C. Papadopoulos, and J. M. Xu, “Growing Y-junction carbon nanotubes,” Nature 402, 253–254 (1999).

Mahan, A. I.

A. I. Mahan, “An Early Exact Solution for the Reflectance of Reflection- Increasing and Reflection-Reducing Films,” J. Opt. Soc. Am. 42(4), 259–262 (1952).
[CrossRef]

Martin, C. R.

C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266(5193), 1961–1966 (1994).
[CrossRef] [PubMed]

Masuda, H.

H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, and K. Nishio, “Ordered mosaic nanocomposites in anodic porous alumina,” Adv. Mater. 15(2), 161–164 (2003).
[CrossRef]

H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13(3), 189–192 (2001).
[CrossRef]

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porus alumina,” Jpn. J. Appl. Phys. 38(Part 2, No. 12A), L1403–L1405 (1999).
[CrossRef]

H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71(19), 2770–2772 (1997).
[CrossRef]

H. Masuda and M. Satoh, “Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L126–L129 (1996).
[CrossRef]

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Matsuo, M.

H. Asoh, M. Matsuo, M. Yoshihama, and S. Ono, “Transfer of nanoporous pattern of anodic porous aluimna into Si substrate,” Appl. Phys. Lett. 83(21), 4408–4410 (2003).
[CrossRef]

Miney, P. G.

P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support,” Electrochem. Solid-State Lett. 6(10), B42–B45 (2003).
[CrossRef]

Müller, F.

A.-P. Li, F. Müller, and U. Gösele, “Polycrystalline and Monocrystalline Pore Arrays with. Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3(3), 131–134 (1999).
[CrossRef]

Myrick, M. L.

P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support,” Electrochem. Solid-State Lett. 6(10), B42–B45 (2003).
[CrossRef]

Nakao, M.

H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, and K. Nishio, “Ordered mosaic nanocomposites in anodic porous alumina,” Adv. Mater. 15(2), 161–164 (2003).
[CrossRef]

H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13(3), 189–192 (2001).
[CrossRef]

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porus alumina,” Jpn. J. Appl. Phys. 38(Part 2, No. 12A), L1403–L1405 (1999).
[CrossRef]

H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71(19), 2770–2772 (1997).
[CrossRef]

Nielsch, K.

J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gösele, “Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp,” J. Vac. Sci. Technol. B 21(2), 763–766 (2003).
[CrossRef]

Nishio, K.

H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, and K. Nishio, “Ordered mosaic nanocomposites in anodic porous alumina,” Adv. Mater. 15(2), 161–164 (2003).
[CrossRef]

H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13(3), 189–192 (2001).
[CrossRef]

Nohtomi, M.

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porus alumina,” Jpn. J. Appl. Phys. 38(Part 2, No. 12A), L1403–L1405 (1999).
[CrossRef]

Ohya, M.

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porus alumina,” Jpn. J. Appl. Phys. 38(Part 2, No. 12A), L1403–L1405 (1999).
[CrossRef]

Ono, S.

H. Asoh, M. Matsuo, M. Yoshihama, and S. Ono, “Transfer of nanoporous pattern of anodic porous aluimna into Si substrate,” Appl. Phys. Lett. 83(21), 4408–4410 (2003).
[CrossRef]

Papadopoulos, C.

J. Li, C. Papadopoulos, and J. M. Xu, “Growing Y-junction carbon nanotubes,” Nature 402, 253–254 (1999).

Priore, R. J.

P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support,” Electrochem. Solid-State Lett. 6(10), B42–B45 (2003).
[CrossRef]

Pu, L.

K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, and Y. D. Zheng, “Photoluminescence oscillations in porous alumina films,” Appl. Phys. Lett. 89(20), 201118 (2006).
[CrossRef]

L. Pu, Y. Shi, J. M. Zhu, X. M. Bao, R. Zhang, and Y. D. Zheng, “Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer,” Chem. Commun. (Camb.) (8): 942–943 (2004).
[CrossRef]

Reiche, M.

J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gösele, “Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp,” J. Vac. Sci. Technol. B 21(2), 763–766 (2003).
[CrossRef]

Santori, C.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Satoh, M.

H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71(19), 2770–2772 (1997).
[CrossRef]

H. Masuda and M. Satoh, “Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L126–L129 (1996).
[CrossRef]

Schiza, M. V.

P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support,” Electrochem. Solid-State Lett. 6(10), B42–B45 (2003).
[CrossRef]

Shi, Y.

K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, and Y. D. Zheng, “Photoluminescence oscillations in porous alumina films,” Appl. Phys. Lett. 89(20), 201118 (2006).
[CrossRef]

L. Pu, Y. Shi, J. M. Zhu, X. M. Bao, R. Zhang, and Y. D. Zheng, “Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer,” Chem. Commun. (Camb.) (8): 942–943 (2004).
[CrossRef]

Solomon, G. S.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Takayama, O.

O. Takayama and M. Cada, “Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths,” Appl. Phys. Lett. 85(8), 1311–1313 (2004).
[CrossRef]

Tamamura, T.

H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, and K. Nishio, “Ordered mosaic nanocomposites in anodic porous alumina,” Adv. Mater. 15(2), 161–164 (2003).
[CrossRef]

H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13(3), 189–192 (2001).
[CrossRef]

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porus alumina,” Jpn. J. Appl. Phys. 38(Part 2, No. 12A), L1403–L1405 (1999).
[CrossRef]

H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71(19), 2770–2772 (1997).
[CrossRef]

Tsybeskov, L.

J. von Behren, L. Tsybeskov, and P. M. Fauchet, “Preparation and characterization of ultrathin porous silicon films,” Appl. Phys. Lett. 66(13), 1662–1664 (1995).
[CrossRef]

von Behren, J.

J. von Behren, L. Tsybeskov, and P. M. Fauchet, “Preparation and characterization of ultrathin porous silicon films,” Appl. Phys. Lett. 66(13), 1662–1664 (1995).
[CrossRef]

Vuckovic, J.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Watanabe, M.

H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13(3), 189–192 (2001).
[CrossRef]

Wehrspohn, R. B.

J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gösele, “Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp,” J. Vac. Sci. Technol. B 21(2), 763–766 (2003).
[CrossRef]

Xu, J. M.

J. Li, C. Papadopoulos, and J. M. Xu, “Growing Y-junction carbon nanotubes,” Nature 402, 253–254 (1999).

Yamada, H.

H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71(19), 2770–2772 (1997).
[CrossRef]

Yamamoto, Y.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Yokoo, A.

H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, and K. Nishio, “Ordered mosaic nanocomposites in anodic porous alumina,” Adv. Mater. 15(2), 161–164 (2003).
[CrossRef]

Yoshihama, M.

H. Asoh, M. Matsuo, M. Yoshihama, and S. Ono, “Transfer of nanoporous pattern of anodic porous aluimna into Si substrate,” Appl. Phys. Lett. 83(21), 4408–4410 (2003).
[CrossRef]

Zhang, R.

K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, and Y. D. Zheng, “Photoluminescence oscillations in porous alumina films,” Appl. Phys. Lett. 89(20), 201118 (2006).
[CrossRef]

L. Pu, Y. Shi, J. M. Zhu, X. M. Bao, R. Zhang, and Y. D. Zheng, “Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer,” Chem. Commun. (Camb.) (8): 942–943 (2004).
[CrossRef]

Zheng, Y. D.

K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, and Y. D. Zheng, “Photoluminescence oscillations in porous alumina films,” Appl. Phys. Lett. 89(20), 201118 (2006).
[CrossRef]

L. Pu, Y. Shi, J. M. Zhu, X. M. Bao, R. Zhang, and Y. D. Zheng, “Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer,” Chem. Commun. (Camb.) (8): 942–943 (2004).
[CrossRef]

Zhu, J. M.

L. Pu, Y. Shi, J. M. Zhu, X. M. Bao, R. Zhang, and Y. D. Zheng, “Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer,” Chem. Commun. (Camb.) (8): 942–943 (2004).
[CrossRef]

Adv. Mater. (2)

H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, and K. Nishio, “Ordered mosaic nanocomposites in anodic porous alumina,” Adv. Mater. 15(2), 161–164 (2003).
[CrossRef]

H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13(3), 189–192 (2001).
[CrossRef]

Appl. Phys. Lett. (5)

K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, and Y. D. Zheng, “Photoluminescence oscillations in porous alumina films,” Appl. Phys. Lett. 89(20), 201118 (2006).
[CrossRef]

J. von Behren, L. Tsybeskov, and P. M. Fauchet, “Preparation and characterization of ultrathin porous silicon films,” Appl. Phys. Lett. 66(13), 1662–1664 (1995).
[CrossRef]

O. Takayama and M. Cada, “Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths,” Appl. Phys. Lett. 85(8), 1311–1313 (2004).
[CrossRef]

H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71(19), 2770–2772 (1997).
[CrossRef]

H. Asoh, M. Matsuo, M. Yoshihama, and S. Ono, “Transfer of nanoporous pattern of anodic porous aluimna into Si substrate,” Appl. Phys. Lett. 83(21), 4408–4410 (2003).
[CrossRef]

Chem. Commun. (Camb.) (1)

L. Pu, Y. Shi, J. M. Zhu, X. M. Bao, R. Zhang, and Y. D. Zheng, “Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer,” Chem. Commun. (Camb.) (8): 942–943 (2004).
[CrossRef]

Electrochem. Solid-State Lett. (2)

A.-P. Li, F. Müller, and U. Gösele, “Polycrystalline and Monocrystalline Pore Arrays with. Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3(3), 131–134 (1999).
[CrossRef]

P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support,” Electrochem. Solid-State Lett. 6(10), B42–B45 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

A. I. Mahan, “An Early Exact Solution for the Reflectance of Reflection- Increasing and Reflection-Reducing Films,” J. Opt. Soc. Am. 42(4), 259–262 (1952).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gösele, “Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp,” J. Vac. Sci. Technol. B 21(2), 763–766 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porus alumina,” Jpn. J. Appl. Phys. 38(Part 2, No. 12A), L1403–L1405 (1999).
[CrossRef]

H. Masuda and M. Satoh, “Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L126–L129 (1996).
[CrossRef]

Nature (2)

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

J. Li, C. Papadopoulos, and J. M. Xu, “Growing Y-junction carbon nanotubes,” Nature 402, 253–254 (1999).

Science (2)

C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266(5193), 1961–1966 (1994).
[CrossRef] [PubMed]

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Other (5)

H. A. Macleod, in Thin film optical filters, (McGrwa-Hill, New York, 1989).

J. D. Rancourt, in Optical thin films. Users Handbook, (McGrwa-Hill, New York, 1987).

A. Suzuki, “Effect of Multiply Charged Ions on the Refractive Index of Titanium Oxide Films and an Application to Decorative Films,” Jpn. J. Appl. Phys. 39(Part 1, No. 3A), 1295–1298 (2000).

P. Yeh, in Optical Waves in Layered Media, (Wiley, New York, 1988).

M. Born, and E. Wolf, in Principles of Optics, (Cambridge, 2003)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photographs of the glass after complete formation of AAO under 10 V: (a) Reflectance photograph of the glass taken from the front; (b) Reflectance photograph of the glass taken from the back; (c) Transmittance photograph of the glass taken from the front; (d) Transmittance photograph of the glass taken from the back.

Fig. 2
Fig. 2

(a) Reflectance and transmittance spectra of AAO on glass under 10 V. The testing conditions are noted in the figure with the same colors as the curves; (b) Sketch of optical path lengths of the reflectance and the transmittance when light incidence is from two sides.

Fig. 3
Fig. 3

SEM images of the microstructure of the samples: (a) Top surface of the sample anodized at 10 V; (b) Remaining aluminum of the sample anodized at 10 V; (c) Remaining aluminum of the sample anodized at 60 V; (d) Cross-sectional view of the sample anodized at 10V.

Fig. 4
Fig. 4

(a) Reflectance spectra versus transmittance spectra of AAO film without aluminum residue; (b) Reflectance spectrum of AAO film with aluminum residue versus reflectance and transmittance spectrum of AAO film without aluminum residue; (c) Sketch of optical path lengths of the reflectance tested at the region with and without aluminum residue.

Fig. 5
Fig. 5

(a) Reflectance spectra versus transmittance spectra of Ta2O5 on quartz film without aluminum residue networks; (b) Reflectance spectra versus transmittance spectra of Ta2O5 on quartz film with aluminum residue networks; (c) Schematic representation of the aluminum residue networks/Ta2O5/quartz wafer structure.

Tables (1)

Tables Icon

Table 1 Wavelengths of the fringe maxima and the m values calculated by wavelength

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ 1 = 2 n λ 1 L    and    ( m + 1 ) λ 2 = 2 n λ 2 L
λ 1 / λ 2 = ( m + 1 ) / m

Metrics