Abstract

Remote sensing finds more and more applications, from industrial control, to face recognition, not forgetting terrain surveying. This trend is well exemplified by fringe projection techniques, which enjoyed a considerable development in the recent years. In addition of high requirement in terms of measurement accuracy and spatial resolution, the end-users of full-field techniques show a growing interest for dynamic regimes. We report here what we believe to be the use for the first time of a CMOS 3-layer color sensor (Foveon X3) as the key element of a RGB fringe projection system, together with the processing specifically elaborated for this sensor. The 3-layer architecture allows the simultaneous recording of three phase-shifted fringe patterns and features the precious asset of an unambiguous relationship between the physical sensor pixel and the picture pixel and this for each color layer, on the contrary of common color sensor arrays (Bayer mosaic and tri-CCD). Due to the overlapping of the spectral responses of the layers, color transformation is mandatory to achieve the separation of the three phase-shifted RGB projected fringe patterns. In addition, we propose the use of the Empirical Mode Decomposition to equalize the non-uniform responses of the three layers. Although the conversion of the phase into a height is of primary importance in an actual measurement, it is not treated here, the literature being profuse on the central projection model.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
    [CrossRef]
  2. E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
    [CrossRef]
  3. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Technol. 48, 149–158 (2010).
  4. P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
    [CrossRef]
  5. K. Creath, Interferogram Analysis (Institute of Physics Publishing, Bristol, UK, 1993), Chap. 4.
  6. P. Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34(22), 4723–4730 (1995).
    [CrossRef] [PubMed]
  7. D. W. Phillion, “General methods for generating phase-shifting interferometry algorithms,” Appl. Opt. 36(31), 8098–8115 (1997).
    [CrossRef] [PubMed]
  8. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35(1), 51–60 (1996).
    [CrossRef] [PubMed]
  9. J. Novak, P. Novak, and A. Miks, “Multi-step phase-shifting algorithms insensitive to linear phase shift errors,” Opt. Commun. 281(21), 5302–5309 (2008).
    [CrossRef]
  10. X. Colonna de Lega and P. Jacquot, “Deformation measurement with object-induced dynamic phase shifting,” Appl. Opt. 35(25), 5115–5121 (1996).
    [CrossRef] [PubMed]
  11. C. Wust and D. W. Capson, “Surface profile measurement using color fringe projection,” Mach. Vis. Appl. 4(3), 193–203 (1991).
    [CrossRef]
  12. http://www.foveon.com .
  13. P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49(3), 320–328 (2010).
    [CrossRef] [PubMed]
  14. http://www.alt-vision.com/ .
  15. S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Technol. 48, 561–569 (2010).
  16. J. A. N. Buytaert and J. J. J. Dirckx, “Phase-shifting moiré topography using optical demodulation on liquid crystal matrices,” Opt. Lasers Eng. 48(2), 172–181 (2010).
    [CrossRef]
  17. C. S. McCamy, H. Marcus, and J. G. Davidson, “A color-rendition chart,” J. Appl. Photogr. Eng. 2(3), 95–99 (1976).
  18. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
    [CrossRef]
  19. P. Flandrin, http://perso.ens-lyon.fr/patrick.flandrin/emd.html .
  20. S. Equis, “Phase extraction of non-stationary signals produced in dynamic interferometry involving speckle waves,” EPFL thesis n° 4514, Lausanne, (2009). http://biblion.epfl.ch/EPFL/theses/2009/4514/EPFL_TH4514.pdf .
  21. S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition and Hilbert transform,” Strain 46(6), 550–558 (2010).
    [CrossRef]
  22. S. Equis and P. Jacquot, “The empirical mode decomposition: a must-have tool in speckle interferometry?” Opt. Express 17(2), 611–623 (2009).
    [CrossRef] [PubMed]
  23. H. A. Aebischer and S. Waldner, “Simple and effective method for filtering speckle interferometric phase fringe patterns,” Opt. Commun. 162(4-6), 205–210 (1999).
    [CrossRef]

2010

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Technol. 48, 149–158 (2010).

P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49(3), 320–328 (2010).
[CrossRef] [PubMed]

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Technol. 48, 561–569 (2010).

J. A. N. Buytaert and J. J. J. Dirckx, “Phase-shifting moiré topography using optical demodulation on liquid crystal matrices,” Opt. Lasers Eng. 48(2), 172–181 (2010).
[CrossRef]

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition and Hilbert transform,” Strain 46(6), 550–558 (2010).
[CrossRef]

2009

S. Equis and P. Jacquot, “The empirical mode decomposition: a must-have tool in speckle interferometry?” Opt. Express 17(2), 611–623 (2009).
[CrossRef] [PubMed]

2008

J. Novak, P. Novak, and A. Miks, “Multi-step phase-shifting algorithms insensitive to linear phase shift errors,” Opt. Commun. 281(21), 5302–5309 (2008).
[CrossRef]

2007

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

2003

P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
[CrossRef]

2000

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

1999

H. A. Aebischer and S. Waldner, “Simple and effective method for filtering speckle interferometric phase fringe patterns,” Opt. Commun. 162(4-6), 205–210 (1999).
[CrossRef]

1998

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

1997

D. W. Phillion, “General methods for generating phase-shifting interferometry algorithms,” Appl. Opt. 36(31), 8098–8115 (1997).
[CrossRef] [PubMed]

1996

Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35(1), 51–60 (1996).
[CrossRef] [PubMed]

X. Colonna de Lega and P. Jacquot, “Deformation measurement with object-induced dynamic phase shifting,” Appl. Opt. 35(25), 5115–5121 (1996).
[CrossRef] [PubMed]

1995

P. Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34(22), 4723–4730 (1995).
[CrossRef] [PubMed]

1991

C. Wust and D. W. Capson, “Surface profile measurement using color fringe projection,” Mach. Vis. Appl. 4(3), 193–203 (1991).
[CrossRef]

1976

C. S. McCamy, H. Marcus, and J. G. Davidson, “A color-rendition chart,” J. Appl. Photogr. Eng. 2(3), 95–99 (1976).

Aebischer, H. A.

H. A. Aebischer and S. Waldner, “Simple and effective method for filtering speckle interferometric phase fringe patterns,” Opt. Commun. 162(4-6), 205–210 (1999).
[CrossRef]

Alatan, A. A.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Benzie, P.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Buytaert, J. A. N.

J. A. N. Buytaert and J. J. J. Dirckx, “Phase-shifting moiré topography using optical demodulation on liquid crystal matrices,” Opt. Lasers Eng. 48(2), 172–181 (2010).
[CrossRef]

Capson, D. W.

C. Wust and D. W. Capson, “Surface profile measurement using color fringe projection,” Mach. Vis. Appl. 4(3), 193–203 (1991).
[CrossRef]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Chiang, F.-P.

P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
[CrossRef]

Colonna de Lega, X.

X. Colonna de Lega and P. Jacquot, “Deformation measurement with object-induced dynamic phase shifting,” Appl. Opt. 35(25), 5115–5121 (1996).
[CrossRef] [PubMed]

Davidson, J. G.

C. S. McCamy, H. Marcus, and J. G. Davidson, “A color-rendition chart,” J. Appl. Photogr. Eng. 2(3), 95–99 (1976).

Desse, J. M.

P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49(3), 320–328 (2010).
[CrossRef] [PubMed]

Dirckx, J. J. J.

J. A. N. Buytaert and J. J. J. Dirckx, “Phase-shifting moiré topography using optical demodulation on liquid crystal matrices,” Opt. Lasers Eng. 48(2), 172–181 (2010).
[CrossRef]

Equis, S.

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition and Hilbert transform,” Strain 46(6), 550–558 (2010).
[CrossRef]

S. Equis and P. Jacquot, “The empirical mode decomposition: a must-have tool in speckle interferometry?” Opt. Express 17(2), 611–623 (2009).
[CrossRef] [PubMed]

Grammalidis, N.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Groot, P.

P. Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34(22), 4723–4730 (1995).
[CrossRef] [PubMed]

Huang, N. E.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

Huang, P. S.

P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
[CrossRef]

Jacquot, P.

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition and Hilbert transform,” Strain 46(6), 550–558 (2010).
[CrossRef]

S. Equis and P. Jacquot, “The empirical mode decomposition: a must-have tool in speckle interferometry?” Opt. Express 17(2), 611–623 (2009).
[CrossRef] [PubMed]

X. Colonna de Lega and P. Jacquot, “Deformation measurement with object-induced dynamic phase shifting,” Appl. Opt. 35(25), 5115–5121 (1996).
[CrossRef] [PubMed]

Lei, S.

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Technol. 48, 561–569 (2010).

Li, J. C.

P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49(3), 320–328 (2010).
[CrossRef] [PubMed]

Liu, H. H.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

Long, S. R.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

Malassiotis, S.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Marcus, H.

C. S. McCamy, H. Marcus, and J. G. Davidson, “A color-rendition chart,” J. Appl. Photogr. Eng. 2(3), 95–99 (1976).

McCamy, C. S.

C. S. McCamy, H. Marcus, and J. G. Davidson, “A color-rendition chart,” J. Appl. Photogr. Eng. 2(3), 95–99 (1976).

Miks, A.

J. Novak, P. Novak, and A. Miks, “Multi-step phase-shifting algorithms insensitive to linear phase shift errors,” Opt. Commun. 281(21), 5302–5309 (2008).
[CrossRef]

Mounier, D.

P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49(3), 320–328 (2010).
[CrossRef] [PubMed]

Novak, J.

J. Novak, P. Novak, and A. Miks, “Multi-step phase-shifting algorithms insensitive to linear phase shift errors,” Opt. Commun. 281(21), 5302–5309 (2008).
[CrossRef]

Novak, P.

J. Novak, P. Novak, and A. Miks, “Multi-step phase-shifting algorithms insensitive to linear phase shift errors,” Opt. Commun. 281(21), 5302–5309 (2008).
[CrossRef]

Ostermann, J.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Phillion, D. W.

D. W. Phillion, “General methods for generating phase-shifting interferometry algorithms,” Appl. Opt. 36(31), 8098–8115 (1997).
[CrossRef] [PubMed]

Picart, P.

P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49(3), 320–328 (2010).
[CrossRef] [PubMed]

Piekh, S.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Sainov, V.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Shen, Z.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

Shih, H. H.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Stoykova, E.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Surrel, Y.

Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35(1), 51–60 (1996).
[CrossRef] [PubMed]

Tankam, P.

P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49(3), 320–328 (2010).
[CrossRef] [PubMed]

Theobalt, C.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Thevar, T.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Tung, C. C.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

Waldner, S.

H. A. Aebischer and S. Waldner, “Simple and effective method for filtering speckle interferometric phase fringe patterns,” Opt. Commun. 162(4-6), 205–210 (1999).
[CrossRef]

Wu, M. C.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

Wust, C.

C. Wust and D. W. Capson, “Surface profile measurement using color fringe projection,” Mach. Vis. Appl. 4(3), 193–203 (1991).
[CrossRef]

Yen, N.-C.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

Zabulis, X.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

Zhang, C.

P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
[CrossRef]

Zhang, S.

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Technol. 48, 149–158 (2010).

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Technol. 48, 561–569 (2010).

Zheng, Q.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

Appl. Opt.

P. Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34(22), 4723–4730 (1995).
[CrossRef] [PubMed]

D. W. Phillion, “General methods for generating phase-shifting interferometry algorithms,” Appl. Opt. 36(31), 8098–8115 (1997).
[CrossRef] [PubMed]

Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35(1), 51–60 (1996).
[CrossRef] [PubMed]

X. Colonna de Lega and P. Jacquot, “Deformation measurement with object-induced dynamic phase shifting,” Appl. Opt. 35(25), 5115–5121 (1996).
[CrossRef] [PubMed]

P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49(3), 320–328 (2010).
[CrossRef] [PubMed]

IEEE Trans. Circ. Syst. Video Tech.

E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D time varying scene capture technologies – a survey,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1568–1586 (2007).
[CrossRef]

J. Appl. Photogr. Eng.

C. S. McCamy, H. Marcus, and J. G. Davidson, “A color-rendition chart,” J. Appl. Photogr. Eng. 2(3), 95–99 (1976).

Mach. Vis. Appl.

C. Wust and D. W. Capson, “Surface profile measurement using color fringe projection,” Mach. Vis. Appl. 4(3), 193–203 (1991).
[CrossRef]

Opt. Commun.

J. Novak, P. Novak, and A. Miks, “Multi-step phase-shifting algorithms insensitive to linear phase shift errors,” Opt. Commun. 281(21), 5302–5309 (2008).
[CrossRef]

H. A. Aebischer and S. Waldner, “Simple and effective method for filtering speckle interferometric phase fringe patterns,” Opt. Commun. 162(4-6), 205–210 (1999).
[CrossRef]

Opt. Eng.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
[CrossRef]

Opt. Express

S. Equis and P. Jacquot, “The empirical mode decomposition: a must-have tool in speckle interferometry?” Opt. Express 17(2), 611–623 (2009).
[CrossRef] [PubMed]

Opt. Laser Technol.

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Technol. 48, 561–569 (2010).

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Technol. 48, 149–158 (2010).

Opt. Lasers Eng.

J. A. N. Buytaert and J. J. J. Dirckx, “Phase-shifting moiré topography using optical demodulation on liquid crystal matrices,” Opt. Lasers Eng. 48(2), 172–181 (2010).
[CrossRef]

Proc. R. Soc. Lond. A

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond. A 454(1971), 903–995 (1998).
[CrossRef]

Strain

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition and Hilbert transform,” Strain 46(6), 550–558 (2010).
[CrossRef]

Other

P. Flandrin, http://perso.ens-lyon.fr/patrick.flandrin/emd.html .

S. Equis, “Phase extraction of non-stationary signals produced in dynamic interferometry involving speckle waves,” EPFL thesis n° 4514, Lausanne, (2009). http://biblion.epfl.ch/EPFL/theses/2009/4514/EPFL_TH4514.pdf .

http://www.foveon.com .

http://www.alt-vision.com/ .

K. Creath, Interferogram Analysis (Institute of Physics Publishing, Bristol, UK, 1993), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics