Abstract

We analyze the interaction of electromagnetic waves with double-layered subwavelength metallic slits on a dielectric substrate. This structure allows efficient transmission of an incident TM-polarized electromagnetic wave into the dielectric substrate, due to the presence of surface modes which couple the incident wave to the TEM waveguide modes supported by the subwavelength metallic slits. Our study shows that electromagnetic transmission through double-layered subwavelength metallic slits is strongly geometry dependent. Based on this observation, a terahertz modulation scheme is presented which, compared to existing terahertz modulator solutions, has the promise of significant enhancement in modulation index over a broad range of terahertz frequencies.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124 (2004).
    [CrossRef]
  2. C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz Transmission System,” Electron. Lett. 44(3), 213 (2008).
    [CrossRef]
  3. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
    [CrossRef]
  4. G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
    [CrossRef]
  5. H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2 liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18(14), 1488–1490 (2006).
    [CrossRef]
  6. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
    [CrossRef] [PubMed]
  7. D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16(19), 15123–15129 (2008).
    [CrossRef] [PubMed]
  8. P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
    [CrossRef]
  9. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
    [CrossRef]
  10. R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett. 36(13), 1156–1158 (2000).
    [CrossRef]
  11. J. P. Gianvittorio, J. Zendejas, Y. Rahmat-Samii, and J. Judy, “Reconfigurable MEMS-enabled frequency selective surfaces,” Electron. Lett. 38(25), 1627 (2002).
    [CrossRef]
  12. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
    [CrossRef]
  13. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [CrossRef] [PubMed]
  14. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 215311 (2009).
    [CrossRef]
  15. H.-T. Chen, W. J. Padilla, J. M. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
    [CrossRef] [PubMed]
  16. H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  17. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [CrossRef]
  18. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [CrossRef] [PubMed]
  19. J. T. Shen and P. M. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70(3), 035101 (2004).
    [CrossRef]
  20. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
    [CrossRef] [PubMed]
  21. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [CrossRef]
  22. D. Peroulis, S. P. Pacheco, K. Sarabandi, and L. B. Katehi, “Electromechanical Considerations in Developing Low-Voltage RF MEMS Switches,” IEEE Trans. Microw. Theory Tech. 51(1), 259–270 (2003).
    [CrossRef]
  23. I.-J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A Low-Voltage and Low-Power RF MEMS Series and Shunt Switches Actuated by Combination of Electromagnetic and Electrostatic Forces,” IEEE Trans. Microw. Theory Tech. 53(7), 2450–2457 (2005).
    [CrossRef]

2009

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[CrossRef] [PubMed]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 215311 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

2008

D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16(19), 15123–15129 (2008).
[CrossRef] [PubMed]

C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz Transmission System,” Electron. Lett. 44(3), 213 (2008).
[CrossRef]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[CrossRef]

2007

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

2006

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2 liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18(14), 1488–1490 (2006).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

2005

I.-J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A Low-Voltage and Low-Power RF MEMS Series and Shunt Switches Actuated by Combination of Electromagnetic and Electrostatic Forces,” IEEE Trans. Microw. Theory Tech. 53(7), 2450–2457 (2005).
[CrossRef]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

2004

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

J. T. Shen and P. M. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70(3), 035101 (2004).
[CrossRef]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124 (2004).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[CrossRef]

2003

D. Peroulis, S. P. Pacheco, K. Sarabandi, and L. B. Katehi, “Electromechanical Considerations in Developing Low-Voltage RF MEMS Switches,” IEEE Trans. Microw. Theory Tech. 51(1), 259–270 (2003).
[CrossRef]

2002

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[CrossRef]

J. P. Gianvittorio, J. Zendejas, Y. Rahmat-Samii, and J. Judy, “Reconfigurable MEMS-enabled frequency selective surfaces,” Electron. Lett. 38(25), 1627 (2002).
[CrossRef]

2000

R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett. 36(13), 1156–1158 (2000).
[CrossRef]

1990

D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
[CrossRef]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Baek, S.-H.

I.-J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A Low-Voltage and Low-Power RF MEMS Series and Shunt Switches Actuated by Combination of Electromagnetic and Electrostatic Forces,” IEEE Trans. Microw. Theory Tech. 53(7), 2450–2457 (2005).
[CrossRef]

Baker, C.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Bank, S. R.

H.-T. Chen, W. J. Padilla, J. M. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[CrossRef]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Brener, I.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 215311 (2009).
[CrossRef]

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Chan, W. L.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 215311 (2009).
[CrossRef]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[CrossRef]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[CrossRef]

Chen, H.-T.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 215311 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Cho, I.-J.

I.-J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A Low-Voltage and Low-Power RF MEMS Series and Shunt Switches Actuated by Combination of Electromagnetic and Electrostatic Forces,” IEEE Trans. Microw. Theory Tech. 53(7), 2450–2457 (2005).
[CrossRef]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 215311 (2009).
[CrossRef]

Cooke, D. G.

D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16(19), 15123–15129 (2008).
[CrossRef] [PubMed]

Cumming, D. R. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Dawson, P.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124 (2004).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[CrossRef]

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Exter, M.

D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
[CrossRef]

Fan, S.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Fattinger, C.

D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
[CrossRef]

Gianvittorio, J. P.

J. P. Gianvittorio, J. Zendejas, Y. Rahmat-Samii, and J. Judy, “Reconfigurable MEMS-enabled frequency selective surfaces,” Electron. Lett. 38(25), 1627 (2002).
[CrossRef]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Grischkowsky, D.

D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
[CrossRef]

Hein, G.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124 (2004).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[CrossRef]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Hsieh, C.-F.

H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2 liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18(14), 1488–1490 (2006).
[CrossRef]

Jastrow, C.

C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz Transmission System,” Electron. Lett. 44(3), 213 (2008).
[CrossRef]

Jepsen, P. U.

D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16(19), 15123–15129 (2008).
[CrossRef] [PubMed]

Judy, J.

J. P. Gianvittorio, J. Zendejas, Y. Rahmat-Samii, and J. Judy, “Reconfigurable MEMS-enabled frequency selective surfaces,” Electron. Lett. 38(25), 1627 (2002).
[CrossRef]

Kadlec, F.

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[CrossRef]

Katehi, L. B.

D. Peroulis, S. P. Pacheco, K. Sarabandi, and L. B. Katehi, “Electromechanical Considerations in Developing Low-Voltage RF MEMS Switches,” IEEE Trans. Microw. Theory Tech. 51(1), 259–270 (2003).
[CrossRef]

Keiding, S.

D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
[CrossRef]

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[CrossRef]

Kersting, R.

R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett. 36(13), 1156–1158 (2000).
[CrossRef]

Kleine-Ostmann, T.

C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz Transmission System,” Electron. Lett. 44(3), 213 (2008).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[CrossRef]

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124 (2004).
[CrossRef]

Koch, M.

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[CrossRef] [PubMed]

C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz Transmission System,” Electron. Lett. 44(3), 213 (2008).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[CrossRef]

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124 (2004).
[CrossRef]

Kopschinski, O.

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[CrossRef] [PubMed]

Kürner, T.

C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz Transmission System,” Electron. Lett. 44(3), 213 (2008).
[CrossRef]

Kužel, P.

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[CrossRef]

Lammel, G.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[CrossRef]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Linfield, E. H.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Mittleman, D. M.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 215311 (2009).
[CrossRef]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[CrossRef]

Münter, K.

C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz Transmission System,” Electron. Lett. 44(3), 213 (2008).
[CrossRef]

Pacheco, S. P.

D. Peroulis, S. P. Pacheco, K. Sarabandi, and L. B. Katehi, “Electromechanical Considerations in Developing Low-Voltage RF MEMS Switches,” IEEE Trans. Microw. Theory Tech. 51(1), 259–270 (2003).
[CrossRef]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Pan, C.-L.

H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2 liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18(14), 1488–1490 (2006).
[CrossRef]

Pan, R.-P.

H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2 liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18(14), 1488–1490 (2006).
[CrossRef]

Panaitov, G.

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[CrossRef]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Peroulis, D.

D. Peroulis, S. P. Pacheco, K. Sarabandi, and L. B. Katehi, “Electromechanical Considerations in Developing Low-Voltage RF MEMS Switches,” IEEE Trans. Microw. Theory Tech. 51(1), 259–270 (2003).
[CrossRef]

Petzelt, J.

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[CrossRef]

Pierz, K.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124 (2004).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[CrossRef]

Piesiewicz, R.

C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz Transmission System,” Electron. Lett. 44(3), 213 (2008).
[CrossRef]

Platzman, P. M.

J. T. Shen and P. M. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70(3), 035101 (2004).
[CrossRef]

Rahmat-Samii, Y.

J. P. Gianvittorio, J. Zendejas, Y. Rahmat-Samii, and J. Judy, “Reconfigurable MEMS-enabled frequency selective surfaces,” Electron. Lett. 38(25), 1627 (2002).
[CrossRef]

Renaud, P.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[CrossRef]

Sarabandi, K.

D. Peroulis, S. P. Pacheco, K. Sarabandi, and L. B. Katehi, “Electromechanical Considerations in Developing Low-Voltage RF MEMS Switches,” IEEE Trans. Microw. Theory Tech. 51(1), 259–270 (2003).
[CrossRef]

Schiesser, S.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[CrossRef]

Schubert, J.

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[CrossRef]

Schweizer, S.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[CrossRef]

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

J. T. Shen and P. M. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70(3), 035101 (2004).
[CrossRef]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Song, T.

I.-J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A Low-Voltage and Low-Power RF MEMS Series and Shunt Switches Actuated by Combination of Electromagnetic and Electrostatic Forces,” IEEE Trans. Microw. Theory Tech. 53(7), 2450–2457 (2005).
[CrossRef]

Strasser, G.

R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett. 36(13), 1156–1158 (2000).
[CrossRef]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[CrossRef]

Tang, T.-T.

H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2 liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18(14), 1488–1490 (2006).
[CrossRef]

Taylor, A. J.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 215311 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Unterrainer, K.

R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett. 36(13), 1156–1158 (2000).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Vieweg, N.

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[CrossRef] [PubMed]

Wilk, R.

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[CrossRef] [PubMed]

Wu, H.-Y.

H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2 liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18(14), 1488–1490 (2006).
[CrossRef]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Yoon, E.

I.-J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A Low-Voltage and Low-Power RF MEMS Series and Shunt Switches Actuated by Combination of Electromagnetic and Electrostatic Forces,” IEEE Trans. Microw. Theory Tech. 53(7), 2450–2457 (2005).
[CrossRef]

Zendejas, J.

J. P. Gianvittorio, J. Zendejas, Y. Rahmat-Samii, and J. Judy, “Reconfigurable MEMS-enabled frequency selective surfaces,” Electron. Lett. 38(25), 1627 (2002).
[CrossRef]

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Zide, J. M.

H.-T. Chen, W. J. Padilla, J. M. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[CrossRef]

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[CrossRef]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 215311 (2009).
[CrossRef]

Electron. Lett.

R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett. 36(13), 1156–1158 (2000).
[CrossRef]

J. P. Gianvittorio, J. Zendejas, Y. Rahmat-Samii, and J. Judy, “Reconfigurable MEMS-enabled frequency selective surfaces,” Electron. Lett. 38(25), 1627 (2002).
[CrossRef]

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124 (2004).
[CrossRef]

C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz Transmission System,” Electron. Lett. 44(3), 213 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2 liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18(14), 1488–1490 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

D. Peroulis, S. P. Pacheco, K. Sarabandi, and L. B. Katehi, “Electromechanical Considerations in Developing Low-Voltage RF MEMS Switches,” IEEE Trans. Microw. Theory Tech. 51(1), 259–270 (2003).
[CrossRef]

I.-J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A Low-Voltage and Low-Power RF MEMS Series and Shunt Switches Actuated by Combination of Electromagnetic and Electrostatic Forces,” IEEE Trans. Microw. Theory Tech. 53(7), 2450–2457 (2005).
[CrossRef]

J. Microelectromech. Syst.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. 11(6), 815–828 (2002).
[CrossRef]

J. Opt. Soc. Am. B

D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
[CrossRef]

Nat. Photonics

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Nature

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[CrossRef] [PubMed]

D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16(19), 15123–15129 (2008).
[CrossRef] [PubMed]

Opt. Lett.

H.-T. Chen, W. J. Padilla, J. M. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

Phys. Rev. B

J. T. Shen and P. M. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70(3), 035101 (2004).
[CrossRef]

Phys. Rev. Lett.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Science

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of double-layered subwavelength metallic slits studied in this paper

Fig. 2
Fig. 2

Power transmission spectrum of a TM-polarized electromagnetic wave normally incident on a double-layered array of subwavelength metallic slits into the substrate and as a function of slit geometry. The results indicate that for thin metallic slits (h 1, h 2 << λ), the maximum power transmissivity is determined by reflections at the substrate-air interface. Maximum transmissivity can be achieved over a broad frequency range for deep subwavelength slits (d << λ). For similar geometric parameters (a 1, a 2, d, s, h 2, h 2 << λ), a more broadband transmission spectrum can be achieved for a) lower aspect ratio slits, b) larger spacing between double-layered metallic slits, c) thicker metallic slits, d, e, and f) power transmission spectrum of the structures analyzed in part a, b, and c calculated by the finite element method (COMSOL package).

Fig. 3
Fig. 3

Contour plot of the power density distribution (a) and power flux (b) of a normally incident TM-polarized electromagnetic wave along a periodic arrangement of double-layered subwavelength metallic slits on a silicon substrate, calculated by the finite element method (COMSOL package). The analyzed geometry is (a1 = 0.5d, a2 = 0.3d, h1 = 0.25d, h2 = 0.025d, s = 0.15d) and the electromagnetic frequency is 0.066c/d. Red arrows represent the electromagnetic power flow direction and illustrate how the electromagnetic propagation direction is bent on top of the metallic slits to excite the TEM slab waveguide modes and achieve a high transmission through the metallic slits.

Fig. 4
Fig. 4

Schematic diagram and operation concept of the presented terahertz beam modulator based on reconfigurable double-layered subwavelength metallic slits.

Fig. 5
Fig. 5

a) Power transmission spectrum of a TM-polarized terahertz wave normally incident on a terahertz modulator based on double-layered subwavelength metallic slits fabricated on a silicon substrate with (a1 = 10μm, a2 = 6μm, h1 = 5μm, h2 = 0.5μm, d = 20μm, s = 1.5μm) during modulation ‘ON’ and ‘OFF’ modes. For an intermediate dielectric with a thickness much smaller than metal skin depth, up to 100% modulation index can be achieved. b) Power transmission through the analyzed modulator with no intermediate dielectric covering the stationary metallic slit array, as a function of the air-gap size between the two subwavelength metallic slit layers.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

H ˜ y ( 1 ) = p u 1 , p e i α p z e i G p x + r 1 , p e i α p z e i G p x
H ˜ y ( 3 ) = p u 3 , p e i α p ( z + h 1 + s ) e i G p x + r 3 , p e i α p ( z + h 1 + s ) e i G p x
H ˜ y ( 5 ) = p t p e i α p s u b ( z + h 1 + h 2 + s ) e i G p x
E ˜ x ( 1 ) = p α p ω ε 0 u 1 , p e i α p z e i G p x α p ω ε 0 r 1 , p e i α p z e i G p x
E ˜ x ( 3 ) = p α p ω ε 0 u 3 , p e i α p ( z + h 1 + s ) e i G p x α p ω ε 0 r 3 , p e i α p ( z + h 1 + s ) e i G p x
E ˜ x ( 5 ) = p α p s u b ω ε s u b t p e i α p s u b ( z + h 1 + h 2 + s ) e i G p x
H ˜ y ( 2 ) = u 2 e i k z r 2 e i k ( z + h 1 )
H ˜ y ( 4 ) = u 4 e i k ( z + h 1 + s ) r 4 e i k ( z + h 1 + h 2 + s )
E ˜ x ( 2 ) = k ω ε 0 u 2 e i k z k ω ε 0 r 2 e i k ( z + h 1 )
E ˜ x ( 4 ) = k ω ε 0 u 4 e i k ( z + h 1 + s ) k ω ε 0 r 4 e i k ( z + h 1 + h 2 + s )
p u 1 , p e i G p x + r 1 , p e i G p x = u 2 + r 2 e i k h 1
p α p ω ε 0 u 1 , p e i G p x α p ω ε 0 r 1 , p e i G p x = k ω ε 0 u 2 k ω ε 0 r 2 e i k h 1
p u 3 , p e i α p s e i G p x + r 3 , p e i α p s e i G p x = u 2 e i k h 1 + r 2
p α p ω ε 0 u 3 , p e i α p s e i G p x α p ω ε 0 r 3 , p e i α p s e i G p x = k ω ε 0 u 2 e i k h 1 k ω ε 0 r 2
p u 3 , p e i G p x + r 3 , p e i G p x = u 4 + r 4 e i k h 2
p α p ω ε 0 u 3 , p e i G p x α p ω ε 0 r 3 , p e i G p x = k ω ε 0 u 4 k ω ε 0 r 4 e i k h 2
p t p e i G p x = u 4 e i k h 2 + r 4
p α p s u b ω ε s u b t p e i G p x = k ω ε 0 u 4 e i k h 2 k ω ε 0 r 4
p ( u 1 , p + r 1 , p ) g p 1 = u 2 + r 2 e i k h 1
p ( u 3 , p e i α p s + r 3 , p e i α p s ) g p 1 = u 2 e i k h 1 + r 2
p ( u 3 , p + r 3 , p ) g p 2 e i G p d / 2 = u 4 + r 4 e i k h 2
p t p g p 2 e i G p d / 2 = u 4 e i k h 2 + r 4
α p ω ε 0 ( u 1 , p r 1 , p ) = a 1 d g p 1 k ω ε 0 ( u 2 r 2 e i k h 1 ) + η ( δ 0 , p + r 1 , p )
α p ω ε 0 ( u 3 , p e i α p s r 3 , p e i α p s ) = a 1 d g p 1 k ω ε 0 ( u 2 e i k h 1 r 2 ) + η ( u 3 , p e i α p s + r 3 , p e i α p s )
α p ω ε 0 ( u 3 , p r 3 , p ) = a 2 d g p 2 e i G p d / 2 k ω ε 0 ( u 4 r 4 e i k h 2 ) + η ( u 3 , p + r 3 , p )
α p s u b ω ε s u b t p = a 2 d g p 2 e i G p d / 2 k ω ε 0 ( u 4 e i k h 2 r 4 ) + η t p

Metrics