Abstract

In light of recent proposals linking structural change and stresses within regenerated gratings, the details of regeneration of a seed Type-I Bragg grating written in H2 loaded germanosilicate fiber annealed at high temperatures (~900°C) are systematically explored. In particular, the influence of the strength of the grating, the effect of GeO2 doping concentration and the annealing conditions on regeneration are studied. We show that the role of dopants such as Ge and F contribute nothing to the regeneration, consistent with previous results. Rather, they may potentially be detrimental. Strongest regenerated gratings with R ~35% from a 5mm seed grating could be obtained in fibres with the lowest GeO2 concentrations such as standard telecommunications-compatible grade fibre.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Zhang and M. Kahrizi, “High temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
    [CrossRef]
  2. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [CrossRef] [PubMed]
  3. E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
    [CrossRef] [PubMed]
  4. S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, “High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber,” Opt. Lett. 30(6), 607–609 (2005).
    [CrossRef] [PubMed]
  5. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19(8), 1759–1765 (2002).
    [CrossRef]
  6. Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
    [CrossRef]
  7. O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
    [CrossRef]
  8. M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25(10), 692–694 (2000).
    [CrossRef]
  9. J. L. Archambault, L. Reekie, and P. St. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
    [CrossRef]
  10. N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29(20), 2360–2362 (2004).
    [CrossRef] [PubMed]
  11. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000◦C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
    [CrossRef]
  12. Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
    [CrossRef] [PubMed]
  13. T. Tani, “A study of intensification of latent images in reduction-sensitized emulsions though delayed development,” J. Imaging Sci. 30(2), 41–46 (1986).
  14. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008) (and refs therein.).
    [CrossRef]
  15. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme Silica Optical Fibre Gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
    [CrossRef]
  16. J. Canning, M. Stevenson, J. Fenton, M. Aslund, and S. Bandyopadhyay, “Strong regenerated gratings,” Proc. SPIE 7503, 750326 (2009).
    [CrossRef]
  17. S. Bandyopadhyay, J. Canning, P. Biswas, R. Chakraborty, and K. Dasgupta, “Regeneration of Complex Bragg Gratings,” Proc. SPIE 7503, 750371 (2009).
    [CrossRef]
  18. Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
    [CrossRef] [PubMed]
  19. M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, and S. D. Jackson, “A. Fuerbach, and M.J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings," Opt. Express 16, 14248–14254 (2008).
  20. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008).
    [CrossRef]
  21. J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated Fibre Bragg Gratings,” pp. 363–384, in Frontiers in Guided Wave Optics and Optoelectronics, Ed. Bishnu Pal, INTECH, ISBN 978–953–7619–82–4, February (2010)
  22. P. J. Heaney, Silica: Physical Behavior, Geochemistry & Materials Applications, Reviews in Mineralogy, Chapter 1, Vol 29 (Ed. P.J. Heaney) (1994)
  23. J. A. Kurki, “Development of fabrication technology and measurement system for multimode, single mode and polarization maintaining optical fiber,” Helsinki University of Technology, Doctor of Technology Thesis, Chapter 2, Table 2.4, 1983.

2009

E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
[CrossRef] [PubMed]

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[CrossRef] [PubMed]

J. Canning, M. Stevenson, J. Fenton, M. Aslund, and S. Bandyopadhyay, “Strong regenerated gratings,” Proc. SPIE 7503, 750326 (2009).
[CrossRef]

S. Bandyopadhyay, J. Canning, P. Biswas, R. Chakraborty, and K. Dasgupta, “Regeneration of Complex Bragg Gratings,” Proc. SPIE 7503, 750371 (2009).
[CrossRef]

2008

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[CrossRef] [PubMed]

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, and S. D. Jackson, “A. Fuerbach, and M.J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings," Opt. Express 16, 14248–14254 (2008).

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008) (and refs therein.).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme Silica Optical Fibre Gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

2007

B. Zhang and M. Kahrizi, “High temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[CrossRef]

Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
[CrossRef]

2006

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000◦C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

2005

S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, “High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber,” Opt. Lett. 30(6), 607–609 (2005).
[CrossRef] [PubMed]

2004

N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29(20), 2360–2362 (2004).
[CrossRef] [PubMed]

2002

M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19(8), 1759–1765 (2002).
[CrossRef]

2000

M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25(10), 692–694 (2000).
[CrossRef]

1993

J. L. Archambault, L. Reekie, and P. St. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

1986

T. Tani, “A study of intensification of latent images in reduction-sensitized emulsions though delayed development,” J. Imaging Sci. 30(2), 41–46 (1986).

Archambault, J. L.

J. L. Archambault, L. Reekie, and P. St. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

Aslund, M.

J. Canning, M. Stevenson, J. Fenton, M. Aslund, and S. Bandyopadhyay, “Strong regenerated gratings,” Proc. SPIE 7503, 750326 (2009).
[CrossRef]

Åslund, M.

M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25(10), 692–694 (2000).
[CrossRef]

Åslund, M. L.

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, and S. D. Jackson, “A. Fuerbach, and M.J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings," Opt. Express 16, 14248–14254 (2008).

Bandyopadhyay, S.

J. Canning, M. Stevenson, J. Fenton, M. Aslund, and S. Bandyopadhyay, “Strong regenerated gratings,” Proc. SPIE 7503, 750326 (2009).
[CrossRef]

S. Bandyopadhyay, J. Canning, P. Biswas, R. Chakraborty, and K. Dasgupta, “Regeneration of Complex Bragg Gratings,” Proc. SPIE 7503, 750371 (2009).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme Silica Optical Fibre Gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

Bartelt, H.

E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
[CrossRef] [PubMed]

Baxter, G. W.

S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, “High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber,” Opt. Lett. 30(6), 607–609 (2005).
[CrossRef] [PubMed]

Becker, M.

E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
[CrossRef] [PubMed]

Biswas, P.

S. Bandyopadhyay, J. Canning, P. Biswas, R. Chakraborty, and K. Dasgupta, “Regeneration of Complex Bragg Gratings,” Proc. SPIE 7503, 750371 (2009).
[CrossRef]

Brückner, S.

E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
[CrossRef] [PubMed]

Butov, O. V.

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
[CrossRef]

Canning, J.

S. Bandyopadhyay, J. Canning, P. Biswas, R. Chakraborty, and K. Dasgupta, “Regeneration of Complex Bragg Gratings,” Proc. SPIE 7503, 750371 (2009).
[CrossRef]

J. Canning, M. Stevenson, J. Fenton, M. Aslund, and S. Bandyopadhyay, “Strong regenerated gratings,” Proc. SPIE 7503, 750326 (2009).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008).
[CrossRef]

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, and S. D. Jackson, “A. Fuerbach, and M.J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings," Opt. Express 16, 14248–14254 (2008).

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008) (and refs therein.).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme Silica Optical Fibre Gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29(20), 2360–2362 (2004).
[CrossRef] [PubMed]

M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25(10), 692–694 (2000).
[CrossRef]

Chakraborty, R.

S. Bandyopadhyay, J. Canning, P. Biswas, R. Chakraborty, and K. Dasgupta, “Regeneration of Complex Bragg Gratings,” Proc. SPIE 7503, 750371 (2009).
[CrossRef]

Chen, S.

Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
[CrossRef]

Chojetzki, C.

E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
[CrossRef] [PubMed]

Collins, S. F.

S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, “High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber,” Opt. Lett. 30(6), 607–609 (2005).
[CrossRef] [PubMed]

Cook, K.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme Silica Optical Fibre Gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

Dasgupta, K.

S. Bandyopadhyay, J. Canning, P. Biswas, R. Chakraborty, and K. Dasgupta, “Regeneration of Complex Bragg Gratings,” Proc. SPIE 7503, 750371 (2009).
[CrossRef]

Dianov, E. M.

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
[CrossRef]

Fenton, J.

J. Canning, M. Stevenson, J. Fenton, M. Aslund, and S. Bandyopadhyay, “Strong regenerated gratings,” Proc. SPIE 7503, 750326 (2009).
[CrossRef]

Fokine, M.

M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19(8), 1759–1765 (2002).
[CrossRef]

Golant, K. M.

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
[CrossRef]

Grattan, K. T.

Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
[CrossRef]

Grattan, K. T. V.

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[CrossRef] [PubMed]

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[CrossRef] [PubMed]

Grobnic, D.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000◦C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

Groothoff, N.

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, and S. D. Jackson, “A. Fuerbach, and M.J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings," Opt. Express 16, 14248–14254 (2008).

N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29(20), 2360–2362 (2004).
[CrossRef] [PubMed]

He, J.

Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
[CrossRef]

Jackson, S. D.

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, and S. D. Jackson, “A. Fuerbach, and M.J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings," Opt. Express 16, 14248–14254 (2008).

Kahrizi, M.

B. Zhang and M. Kahrizi, “High temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[CrossRef]

Kitcher, D. J.

S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, “High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber,” Opt. Lett. 30(6), 607–609 (2005).
[CrossRef] [PubMed]

Li, Y.

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[CrossRef] [PubMed]

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[CrossRef] [PubMed]

Liao, C. R.

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[CrossRef] [PubMed]

Lindner, E.

E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
[CrossRef] [PubMed]

Lu, J.

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[CrossRef] [PubMed]

Marshall, G. D.

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, and S. D. Jackson, “A. Fuerbach, and M.J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings," Opt. Express 16, 14248–14254 (2008).

Mihailov, S. J.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000◦C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

Nemanja, N.

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, and S. D. Jackson, “A. Fuerbach, and M.J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings," Opt. Express 16, 14248–14254 (2008).

Qiu, Y.

Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
[CrossRef]

Reekie, L.

J. L. Archambault, L. Reekie, and P. St. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

Rothhardt, M.

E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
[CrossRef] [PubMed]

Shen, Y.

Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
[CrossRef]

Smelser, C. W.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000◦C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

St. Russell, P.

J. L. Archambault, L. Reekie, and P. St. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

Stevenson, M.

J. Canning, M. Stevenson, J. Fenton, M. Aslund, and S. Bandyopadhyay, “Strong regenerated gratings,” Proc. SPIE 7503, 750326 (2009).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme Silica Optical Fibre Gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

Sun, T.

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[CrossRef] [PubMed]

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[CrossRef] [PubMed]

Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
[CrossRef]

Tani, T.

T. Tani, “A study of intensification of latent images in reduction-sensitized emulsions though delayed development,” J. Imaging Sci. 30(2), 41–46 (1986).

Trpkovski, S.

S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, “High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber,” Opt. Lett. 30(6), 607–609 (2005).
[CrossRef] [PubMed]

Wade, S. A.

S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, “High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber,” Opt. Lett. 30(6), 607–609 (2005).
[CrossRef] [PubMed]

Walker, R. B.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000◦C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

Wang, D. N.

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[CrossRef] [PubMed]

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[CrossRef] [PubMed]

Yang, M.

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[CrossRef] [PubMed]

Zhang, B.

B. Zhang and M. Kahrizi, “High temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[CrossRef]

Zhao, W.

Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
[CrossRef]

Electron. Lett.

J. L. Archambault, L. Reekie, and P. St. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

IEEE Sens. J.

B. Zhang and M. Kahrizi, “High temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[CrossRef]

J. Imaging Sci.

T. Tani, “A study of intensification of latent images in reduction-sensitized emulsions though delayed development,” J. Imaging Sci. 30(2), 41–46 (1986).

J. Opt. Soc. Am. B

M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19(8), 1759–1765 (2002).
[CrossRef]

Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
[CrossRef]

Laser Photon. Rev.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008) (and refs therein.).
[CrossRef]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008).
[CrossRef]

Meas. Sci. Technol.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000◦C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
[CrossRef]

Opt. Express

E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
[CrossRef] [PubMed]

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[CrossRef] [PubMed]

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[CrossRef] [PubMed]

Opt. Lett.

N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29(20), 2360–2362 (2004).
[CrossRef] [PubMed]

S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, “High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber,” Opt. Lett. 30(6), 607–609 (2005).
[CrossRef] [PubMed]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25(10), 692–694 (2000).
[CrossRef]

Proc. SPIE

J. Canning, M. Stevenson, J. Fenton, M. Aslund, and S. Bandyopadhyay, “Strong regenerated gratings,” Proc. SPIE 7503, 750326 (2009).
[CrossRef]

S. Bandyopadhyay, J. Canning, P. Biswas, R. Chakraborty, and K. Dasgupta, “Regeneration of Complex Bragg Gratings,” Proc. SPIE 7503, 750371 (2009).
[CrossRef]

Sensors (Basel Switzerland)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme Silica Optical Fibre Gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

Other

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, and S. D. Jackson, “A. Fuerbach, and M.J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings," Opt. Express 16, 14248–14254 (2008).

J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated Fibre Bragg Gratings,” pp. 363–384, in Frontiers in Guided Wave Optics and Optoelectronics, Ed. Bishnu Pal, INTECH, ISBN 978–953–7619–82–4, February (2010)

P. J. Heaney, Silica: Physical Behavior, Geochemistry & Materials Applications, Reviews in Mineralogy, Chapter 1, Vol 29 (Ed. P.J. Heaney) (1994)

J. A. Kurki, “Development of fabrication technology and measurement system for multimode, single mode and polarization maintaining optical fiber,” Helsinki University of Technology, Doctor of Technology Thesis, Chapter 2, Table 2.4, 1983.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Evolution of Bragg wavelength and reflection peak during grating regeneration and stabilization.

Fig. 2
Fig. 2

Annealing schedules.

Fig. 3
Fig. 3

Reflection spectra of regenerated grating obtained through different annealing schedule (measured at room temperature).

Fig. 4
Fig. 4

Transmission spectra of Type-1 seed gratings of different strengths.

Fig. 5
Fig. 5

Reflection (a) and Transmission (b) spectra of regenerated gratings obtained from Type-I seed gratings as shown in Fig. 4.

Fig. 6
Fig. 6

Evolution of reflection peak of type-I gratings of different strength during grating regeneration.

Fig. 7
Fig. 7

Reflection spectra of regenerated gratings as obtained in different fibers from similar seed gratings

Tables (3)

Tables Icon

Table 1 Results of grating regeneration for different annealing schedules

Tables Icon

Table 2 Results of grating regeneration from seed gratings of different strengths

Tables Icon

Table 3 Results of grating regeneration from the seeds written in fibers with different [GeO2].

Metrics