Abstract

This study proposes a simple and cost-effective method of fabricating a double-layer polymeric optical waveguide, using two hot-embossing processes with a single stamp and template for passive alignment between the top and bottom layers. The two hot-embossing processes were conducted sequentially on the top layer and the bottom layer of the polymer layer. The second hot-embossing process was conducted after fabricating the buffer layer on the surface of the polymeric channel structure to control deformation and destruction of the previously fabricated polymeric channel structure. Passive alignment of the channel structure for the top layer and the bottom layer was automatically performed by simple insertion of the stamp and polymer layer using a metal template with the same dimensions (width x length) as the stamp. Regarding the polymer layer, the buffer layer on the side with the channel structure was coated, whereas the layer contacting the stamp did not have a buffer layer. For the purposes of this study, a 2 x 50 channel polymeric multimode optical waveguide was fabricated using a stamp with 50 straight ribs, without any coupling between the layers. The fabricated optical waveguide was controlled within positional tolerances of less than ± 5 μm between layers; propagation loss of below 0.2 dB/cm at 850 nm; and channel uniformity of below 0.5 dB.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
    [CrossRef]
  2. H. S. Park, H. H. Shin, M. Y. Sung, W. B. Choi, S. W. Choi, and S. Y. Park, “Improvements of defects by patterning using thermal nanoimprint lithography,” Jpn. J. Appl. Phys. 46(No. 4A), 1808–1814 (2007).
    [CrossRef]
  3. J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
    [CrossRef]
  4. D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
    [CrossRef] [PubMed]
  5. H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
    [CrossRef]
  6. F. Zhang and H. Y. Low, “Ordered three-dimensional hierarchical nanostructures by nanoimprint lithography,” Nanotechnology 17(8), 1884–1890 (2006).
    [CrossRef]
  7. C. G. Choi, S. P. Han, and M. Y. Jeong, “Two-dimensional polymeric optical waveguide for high-density parallel optical interconnection,” Opt. Commun. 235(1-3), 69–73 (2004).
    [CrossRef]
  8. W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
    [CrossRef]
  9. A. H. Cannon and W. P. King, “Casting metal microstructures from a flexible and reusable mold,” J. Micromech. Microeng. 19(9), 095016 (2009), doi:.
    [CrossRef]
  10. J. Narasimhan and I. Papautsky, “Polymer embossing tools for rapid prototyping of plastic microfluidic devices,” J. Micromech. Microeng. 14(1), 96–103 (2004).
    [CrossRef]

2009

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

A. H. Cannon and W. P. King, “Casting metal microstructures from a flexible and reusable mold,” J. Micromech. Microeng. 19(9), 095016 (2009), doi:.
[CrossRef]

2008

D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
[CrossRef] [PubMed]

2007

H. S. Park, H. H. Shin, M. Y. Sung, W. B. Choi, S. W. Choi, and S. Y. Park, “Improvements of defects by patterning using thermal nanoimprint lithography,” Jpn. J. Appl. Phys. 46(No. 4A), 1808–1814 (2007).
[CrossRef]

2006

F. Zhang and H. Y. Low, “Ordered three-dimensional hierarchical nanostructures by nanoimprint lithography,” Nanotechnology 17(8), 1884–1890 (2006).
[CrossRef]

2005

H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
[CrossRef]

2004

C. G. Choi, S. P. Han, and M. Y. Jeong, “Two-dimensional polymeric optical waveguide for high-density parallel optical interconnection,” Opt. Commun. 235(1-3), 69–73 (2004).
[CrossRef]

J. Narasimhan and I. Papautsky, “Polymer embossing tools for rapid prototyping of plastic microfluidic devices,” J. Micromech. Microeng. 14(1), 96–103 (2004).
[CrossRef]

1996

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Ahn, S. H.

D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
[CrossRef] [PubMed]

Cannon, A. H.

A. H. Cannon and W. P. King, “Casting metal microstructures from a flexible and reusable mold,” J. Micromech. Microeng. 19(9), 095016 (2009), doi:.
[CrossRef]

Cho, I. K.

D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
[CrossRef] [PubMed]

Cho, S. U.

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

Choi, C. G.

H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
[CrossRef]

C. G. Choi, S. P. Han, and M. Y. Jeong, “Two-dimensional polymeric optical waveguide for high-density parallel optical interconnection,” Opt. Commun. 235(1-3), 69–73 (2004).
[CrossRef]

Choi, S. W.

H. S. Park, H. H. Shin, M. Y. Sung, W. B. Choi, S. W. Choi, and S. Y. Park, “Improvements of defects by patterning using thermal nanoimprint lithography,” Jpn. J. Appl. Phys. 46(No. 4A), 1808–1814 (2007).
[CrossRef]

Choi, W. B.

H. S. Park, H. H. Shin, M. Y. Sung, W. B. Choi, S. W. Choi, and S. Y. Park, “Improvements of defects by patterning using thermal nanoimprint lithography,” Jpn. J. Appl. Phys. 46(No. 4A), 1808–1814 (2007).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Gobrecht, J.

H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
[CrossRef]

Han, S. P.

H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
[CrossRef]

C. G. Choi, S. P. Han, and M. Y. Jeong, “Two-dimensional polymeric optical waveguide for high-density parallel optical interconnection,” Opt. Commun. 235(1-3), 69–73 (2004).
[CrossRef]

Hwang, S. H.

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Im, D. M.

D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
[CrossRef] [PubMed]

Jeong, M. Y.

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

C. G. Choi, S. P. Han, and M. Y. Jeong, “Two-dimensional polymeric optical waveguide for high-density parallel optical interconnection,” Opt. Commun. 235(1-3), 69–73 (2004).
[CrossRef]

Jung, B. K.

H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
[CrossRef]

Kee, C. S.

H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
[CrossRef]

Kim, C. S.

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

Kim, D. W.

D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
[CrossRef] [PubMed]

King, W. P.

A. H. Cannon and W. P. King, “Casting metal microstructures from a flexible and reusable mold,” J. Micromech. Microeng. 19(9), 095016 (2009), doi:.
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Lee, T. H.

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

Lee, W. J.

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Lim, J. W.

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Low, H. Y.

F. Zhang and H. Y. Low, “Ordered three-dimensional hierarchical nanostructures by nanoimprint lithography,” Nanotechnology 17(8), 1884–1890 (2006).
[CrossRef]

Narasimhan, J.

J. Narasimhan and I. Papautsky, “Polymer embossing tools for rapid prototyping of plastic microfluidic devices,” J. Micromech. Microeng. 14(1), 96–103 (2004).
[CrossRef]

Oh, S. H.

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

Papautsky, I.

J. Narasimhan and I. Papautsky, “Polymer embossing tools for rapid prototyping of plastic microfluidic devices,” J. Micromech. Microeng. 14(1), 96–103 (2004).
[CrossRef]

Park, H. H.

D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
[CrossRef] [PubMed]

Park, H. S.

H. S. Park, H. H. Shin, M. Y. Sung, W. B. Choi, S. W. Choi, and S. Y. Park, “Improvements of defects by patterning using thermal nanoimprint lithography,” Jpn. J. Appl. Phys. 46(No. 4A), 1808–1814 (2007).
[CrossRef]

Park, S. G.

H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
[CrossRef]

Park, S. Y.

H. S. Park, H. H. Shin, M. Y. Sung, W. B. Choi, S. W. Choi, and S. Y. Park, “Improvements of defects by patterning using thermal nanoimprint lithography,” Jpn. J. Appl. Phys. 46(No. 4A), 1808–1814 (2007).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Rho, B. S.

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Ryu, J. H.

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

Schift, H.

H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
[CrossRef]

Shin, H. H.

H. S. Park, H. H. Shin, M. Y. Sung, W. B. Choi, S. W. Choi, and S. Y. Park, “Improvements of defects by patterning using thermal nanoimprint lithography,” Jpn. J. Appl. Phys. 46(No. 4A), 1808–1814 (2007).
[CrossRef]

Shorab Muslim, S. M.

D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
[CrossRef] [PubMed]

Sung, M. Y.

H. S. Park, H. H. Shin, M. Y. Sung, W. B. Choi, S. W. Choi, and S. Y. Park, “Improvements of defects by patterning using thermal nanoimprint lithography,” Jpn. J. Appl. Phys. 46(No. 4A), 1808–1814 (2007).
[CrossRef]

Yoon, K. B.

H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
[CrossRef]

Zhang, F.

F. Zhang and H. Y. Low, “Ordered three-dimensional hierarchical nanostructures by nanoimprint lithography,” Nanotechnology 17(8), 1884–1890 (2006).
[CrossRef]

Curr. Appl. Phys.

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

J. Micromech. Microeng.

A. H. Cannon and W. P. King, “Casting metal microstructures from a flexible and reusable mold,” J. Micromech. Microeng. 19(9), 095016 (2009), doi:.
[CrossRef]

J. Narasimhan and I. Papautsky, “Polymer embossing tools for rapid prototyping of plastic microfluidic devices,” J. Micromech. Microeng. 14(1), 96–103 (2004).
[CrossRef]

J. Vac. Sci. Technol. B

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Jpn. J. Appl. Phys.

H. S. Park, H. H. Shin, M. Y. Sung, W. B. Choi, S. W. Choi, and S. Y. Park, “Improvements of defects by patterning using thermal nanoimprint lithography,” Jpn. J. Appl. Phys. 46(No. 4A), 1808–1814 (2007).
[CrossRef]

Nanotechnology

H. Schift, S. G. Park, B. K. Jung, C. G. Choi, C. S. Kee, S. P. Han, K. B. Yoon, and J. Gobrecht, “Fabrication of polymer photonic crystals using nanoimprint lithography,” Nanotechnology 16(5), S261–S265 (2005).
[CrossRef]

F. Zhang and H. Y. Low, “Ordered three-dimensional hierarchical nanostructures by nanoimprint lithography,” Nanotechnology 17(8), 1884–1890 (2006).
[CrossRef]

Opt. Commun.

C. G. Choi, S. P. Han, and M. Y. Jeong, “Two-dimensional polymeric optical waveguide for high-density parallel optical interconnection,” Opt. Commun. 235(1-3), 69–73 (2004).
[CrossRef]

Opt. Express

D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical coupling losses according to waveguide distance.

Fig. 2
Fig. 2

Schematic diagram of the passive alignment between the top layer and the bottom layer.

Fig. 3
Fig. 3

Fabrication of a double-layer polymeric optical waveguide.

Fig. 4
Fig. 4

Fabrication of a single-layer polymer structure by hot-embossing: (a) Ni stamp for the hot-embossing process; (b) hot-embossed polymer structure;(c) cross-sectional image of a hot-embossed polymer structure.

Fig. 5
Fig. 5

Fabrication of polymer middle-clad: (a) fabricated middle-clad SEM image; (b) metal disk template for passive alignment between the top layer and the bottom layer; (c) PDMS structure image for the buffer layer.

Fig. 6
Fig. 6

Fabricated double-layer polymeric optical waveguide.

Fig. 7
Fig. 7

Optical uniformity of the fabricated double-layer polymeric optical waveguide.

Tables (1)

Tables Icon

Table 1 List of the parameters used in the systematic study

Metrics