Abstract

A Q-switched Nd:YAG laser providing nanosecond pulse durations and millijoule pulse energies is suitable for typical biomedical PA applications. However, such lasers are both bulky and expensive. An alternative method is to use a diode laser, which can achieve a higher pulse repetition frequency. Although the energy from a diode laser is generally too low for effective PA generation, this can be remedied by using high-speed coded laser pulses, with the signal intensity of the received signal being enhanced by pulse compression. In this study we tested a version of this method that employs coded excitation. A 20-MHz PA transducer was used for backward-mode PA detection. A frequency-coded PA signal was generated by tuning the interval between two adjacent laser pulses. The experimental results showed that this methodology improved the signal-to-noise ratio of the decoded PA signal by up to 19.3 dB, although high range side lobes were also present. These side lobes could be reduced by optimizing the compression filter. In contrast to the Golay codes proposed in the literature, the proposed coded excitation requires only a single stimulus.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101–041122 (2006).
    [CrossRef]
  2. K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13, 024006 (2008).
    [CrossRef] [PubMed]
  3. T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
    [CrossRef] [PubMed]
  4. T. J. Allen and P. C. Beard, “Dual wavelength laser diode excitation source for 2D photoacoustic imaging,” Proc. SPIE 6437, 1U1–1U9 (2007).
  5. R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer’s perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005).
    [CrossRef] [PubMed]
  6. M. P. Mienkina, A. Eder, G. Schmitz, C. S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Simulation study of photoacoustic coded excitation using Golay codes,” Proc. IEEE Ultrason. Symp. 1242–1245 (2008).
  7. M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
    [CrossRef] [PubMed]
  8. G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic “signatures” of particulate matter: optical production of acoustic monopole radiation,” Science 250(4977), 101–104 (1990).
    [CrossRef] [PubMed]
  9. G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
    [CrossRef] [PubMed]
  10. P.-C. Li, C.-W. Wei, and Y.-L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
    [CrossRef] [PubMed]

2010 (1)

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

2008 (2)

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13, 024006 (2008).
[CrossRef] [PubMed]

P.-C. Li, C.-W. Wei, and Y.-L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
[CrossRef] [PubMed]

2006 (2)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101–041122 (2006).
[CrossRef]

T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
[CrossRef] [PubMed]

2005 (1)

R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer’s perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005).
[CrossRef] [PubMed]

1991 (1)

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

1990 (1)

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic “signatures” of particulate matter: optical production of acoustic monopole radiation,” Science 250(4977), 101–104 (1990).
[CrossRef] [PubMed]

Allen, T. J.

T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
[CrossRef] [PubMed]

Beard, P. C.

T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
[CrossRef] [PubMed]

Beckmann, M. F.

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

Chiao, R. Y.

R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer’s perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005).
[CrossRef] [PubMed]

Diebold, G. J.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic “signatures” of particulate matter: optical production of acoustic monopole radiation,” Science 250(4977), 101–104 (1990).
[CrossRef] [PubMed]

Friedrich, C. S.

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

Gerhardt, N. C.

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

Hao, X.

R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer’s perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005).
[CrossRef] [PubMed]

Hofmann, M. R.

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

Khan, M. I.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic “signatures” of particulate matter: optical production of acoustic monopole radiation,” Science 250(4977), 101–104 (1990).
[CrossRef] [PubMed]

Li, P.-C.

P.-C. Li, C.-W. Wei, and Y.-L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
[CrossRef] [PubMed]

Maslov, K.

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13, 024006 (2008).
[CrossRef] [PubMed]

Mienkina, M. P.

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

Park, S. M.

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic “signatures” of particulate matter: optical production of acoustic monopole radiation,” Science 250(4977), 101–104 (1990).
[CrossRef] [PubMed]

Schiffner, M. F.

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

Schmitz, G.

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

Sheu, Y.-L.

P.-C. Li, C.-W. Wei, and Y.-L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
[CrossRef] [PubMed]

Sun, T.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Wang, L. V.

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13, 024006 (2008).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101–041122 (2006).
[CrossRef]

Wei, C.-W.

P.-C. Li, C.-W. Wei, and Y.-L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101–041122 (2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer’s perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13, 024006 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. F. Beckmann, M. F. Schiffner, M. R. Hofmann, and G. Schmitz, “Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes,” Opt. Express 18(9), 9076–9087 (2010).
[CrossRef] [PubMed]

P.-C. Li, C.-W. Wei, and Y.-L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101–041122 (2006).
[CrossRef]

Science (1)

G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic “signatures” of particulate matter: optical production of acoustic monopole radiation,” Science 250(4977), 101–104 (1990).
[CrossRef] [PubMed]

Other (2)

T. J. Allen and P. C. Beard, “Dual wavelength laser diode excitation source for 2D photoacoustic imaging,” Proc. SPIE 6437, 1U1–1U9 (2007).

M. P. Mienkina, A. Eder, G. Schmitz, C. S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, “Simulation study of photoacoustic coded excitation using Golay codes,” Proc. IEEE Ultrason. Symp. 1242–1245 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Frequencies of the designed FM codes.

Fig. 2
Fig. 2

(a–c): Amplitudes of frequency component in dB of FM codes 1, 2, and 3, respectively, for different code cycles.

Fig. 3
Fig. 3

Experimental setup for PA signal generation with the proposed coded excitation.

Fig. 4
Fig. 4

(a): Code signal generated by the AWG and the corresponding diode laser output signal. (b): PA signal generated using the code signal in (a). (c): Spectra of the code signal, laser output signal, and PA signal.

Fig. 5
Fig. 5

(a–d): Laser excitation codes for the 2-, 4-, 8-, and 16-cycle FM code 1. (e–h): PA signals generated using the code signals in (a)–(d), respectively. (i–l): Spectra of the laser pulses in (a)–(d) and the PA signals in (e)–(h).

Fig. 6
Fig. 6

(a–d): Time–frequency representations of the laser excitation codes for 2-, 4-, 8-, and 16-cycle FM code 1. (e–h): Corresponding time–frequency representations of the generated PA signals.

Fig. 7
Fig. 7

(a–d): Generated PA signal, calculated linear frequency-modulated signal, decoded PA signal, and spectra of the PA signal and the calculated linear frequency-modulated signal for FM code 1, respectively. (e–h): Results for FM code 2. (i–l): Results for FM code 3.

Fig. 8
Fig. 8

(a): Calculation of SNR of the PA signal. (b): SNRs of the pulsed decoded PA signals of FM codes 1, 2, and 3, and the SNR improvements (decoded PA minus pulsed PA).

Fig. 9
Fig. 9

(a–c). Axial widths of pulsed and decoded PA signals for FM codes 1, 2, and 3, respectively.

Tables (1)

Tables Icon

Table 1 Axial beam widths (in millimeters) of decoded and pulsed PA signals

Metrics