Abstract

Electromagnetic cloak is a device which makes an object “invisible” for electromagnetic irradiation in a certain frequency range. Material parameters for the complementary medium-assisted external cylindrical cloak with arbitrary cross section are derived based on combining the concepts of complementary media and transformation optics. It can make the object with arbitrary shape outside the cloaking domain invisible, as long as an “antiobject” is embedded in the complementary media layer. Moreover, we find that the shape, size and the position of the “antiobject” is dependent on the contour of the cloak and the coordinate transformation. The external cloaking effect has been verified by full-wave simulation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  4. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [CrossRef]
  5. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  7. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [CrossRef] [PubMed]
  8. A. Alu and N. Engheta, “Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking,” N. J. Phys. 10(11), 115036 (2008).
    [CrossRef]
  9. D. A. B. Miller, “On perfect cloaking,” Opt. Express 14(25), 12457–12466 (2006).
    [CrossRef] [PubMed]
  10. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17(17), 14800–14805 (2009).
    [CrossRef] [PubMed]
  11. P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
    [CrossRef]
  12. N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
    [CrossRef] [PubMed]
  13. G. W. Milton, N. A. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” N. J. Phys. 10(11), 115021 (2008).
    [CrossRef]
  14. P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
    [CrossRef]
  15. O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys. 102(12), 124502 (2007).
    [CrossRef]
  16. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [CrossRef] [PubMed]
  17. C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
    [CrossRef] [PubMed]
  18. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
    [CrossRef] [PubMed]
  19. J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
    [CrossRef] [PubMed]

2009

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17(17), 14800–14805 (2009).
[CrossRef] [PubMed]

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[CrossRef]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

2008

G. W. Milton, N. A. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” N. J. Phys. 10(11), 115021 (2008).
[CrossRef]

C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
[CrossRef] [PubMed]

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

A. Alu and N. Engheta, “Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking,” N. J. Phys. 10(11), 115036 (2008).
[CrossRef]

2007

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys. 102(12), 124502 (2007).
[CrossRef]

2006

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[CrossRef] [PubMed]

D. A. B. Miller, “On perfect cloaking,” Opt. Express 14(25), 12457–12466 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Alitalo, P.

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[CrossRef]

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

Alu, A.

A. Alu and N. Engheta, “Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking,” N. J. Phys. 10(11), 115036 (2008).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Botten, L. C.

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

Bruno, O. P.

O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys. 102(12), 124502 (2007).
[CrossRef]

Chan, C. T.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Chen, H. Y.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Cherednichenko, K.

G. W. Milton, N. A. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” N. J. Phys. 10(11), 115021 (2008).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Engheta, N.

A. Alu and N. Engheta, “Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking,” N. J. Phys. 10(11), 115036 (2008).
[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Huang, M.

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

Jacob, Z.

G. W. Milton, N. A. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” N. J. Phys. 10(11), 115021 (2008).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Jylhä, L.

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

Lai, Y.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, C.

C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
[CrossRef] [PubMed]

Li, F.

C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
[CrossRef] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Lintner, S.

O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys. 102(12), 124502 (2007).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Luukkonen, O.

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

McPhedran, R. C.

G. W. Milton, N. A. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” N. J. Phys. 10(11), 115021 (2008).
[CrossRef]

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

Miller, D. A. B.

D. A. B. Miller, “On perfect cloaking,” Opt. Express 14(25), 12457–12466 (2006).
[CrossRef] [PubMed]

Milton, G. W.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17(17), 14800–14805 (2009).
[CrossRef] [PubMed]

G. W. Milton, N. A. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” N. J. Phys. 10(11), 115021 (2008).
[CrossRef]

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Nicorovici, N. A.

G. W. Milton, N. A. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” N. J. Phys. 10(11), 115021 (2008).
[CrossRef]

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

Onofrei, D.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17(17), 14800–14805 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[CrossRef] [PubMed]

Peng, J. H.

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Tretyakov, S.

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[CrossRef]

Tretyakov, S. A.

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Vasquez, F. G.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17(17), 14800–14805 (2009).
[CrossRef] [PubMed]

Venermo, J.

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

Xiao, Z.

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

Yang, C. F.

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

Yang, J. J.

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, Z. Q.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

IEEE Trans. Antenn. Propag.

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

J. Appl. Phys.

O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys. 102(12), 124502 (2007).
[CrossRef]

Mater. Today

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[CrossRef]

N. J. Phys.

G. W. Milton, N. A. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” N. J. Phys. 10(11), 115021 (2008).
[CrossRef]

A. Alu and N. Engheta, “Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking,” N. J. Phys. 10(11), 115036 (2008).
[CrossRef]

Nat. Mater.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Opt. Express

D. A. B. Miller, “On perfect cloaking,” Opt. Express 14(25), 12457–12466 (2006).
[CrossRef] [PubMed]

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17(17), 14800–14805 (2009).
[CrossRef] [PubMed]

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[CrossRef] [PubMed]

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Science

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) The system composed of air layer ( b R ( θ ) < r < c R ( θ ) ), the complementary media layer ( a R ( θ ) < r < b R ( θ ) ) and the core material layer ( r < a R ( θ ) ) that is optically equal to a large circle of air ( r < c R ( θ ) ). (b) A scheme to cloak an object of ε o , μ o by placing the “antiobject” of ε o , μ o in the complementary media layer.

Fig. 2
Fig. 2

The electric field (Ez) distributions in the vicinity of the core material ( r < a R ( θ ) ) and the complementary layer ( a R ( θ ) < r < b R ( θ ) ) under cylindrical wave irradiation.

Fig. 3
Fig. 3

Electric field distributions under cylindrical wave irradiation. (a) The circular dielectric object with r = 0.3 is centered at (−1.5, −1.5). (b) The object in (a) is hidden by the cloak with arbitrary shape. (c) The circular dielectric shell of ε o = 2 , μ o = 1 . (d) The shell in (c) is hidden by the cloak with embedded “antiobject” shell of ε o = 2 ε i j , μ o = μ i j . (e) The shell with parameters of ε o = 1 , μ o = 1 . (f) The shell in (e) is hidden by the cloak with embedded “antiobject” shell of ε o = ε i j , μ o = μ i j .

Fig. 4
Fig. 4

Electric field distribution in the vicinity of the cloak under cylindrical wave irradiation. The line source is located at (3, 0), (−3, 0), (0, 3) and (0, −3) for (a), (b), (c) and (d).

Fig. 5
Fig. 5

Electric field distribution in the computation domain under TE wave irradiation. (a) The electric field distribution in the vicinity of the system composed of core material and the complementary layer. (b) The cloaking of the dielectric circular dielectric object. (c) The cloaking of the shell of ε o = 2 , μ o = 1 . (d) The cloaking of the shell of ε o = 1 , μ o = 1 .

Fig. 6
Fig. 6

Electric field distribution in the computation domain of the cloak with loss tangent of 10−4 (a), 0.01 (b), and 0.1 (c).

Fig. 7
Fig. 7

Electric field distributions for the complementary medium-assisted cloak with circular (a), elliptical (b), and square (c) cross sections under cylindrical wave irradiation.

Fig. 8
Fig. 8

Similar to Fig. 7, but for TE plane wave irradiation.

Fig. 9
Fig. 9

Comparison of the characteristic of the external cloak based on linear and nonlinear transformation. (a) and (b) are corresponding to the linear transformation of Eq. (2). (c) and (d) are corresponding to the nonlinear transformation of Eq. (9). (e) and (f) are corresponding to the nonlinear transformation of Eq. (10). In panels (a), (c) and (e), the dielectric object with radius r = 0.2 λ , is centered at (−1.25, 0). In (b), (d) and (f), the “antiobject” with radius r = 0.15 λ , is centered at (−0.75, 0).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε i j = Λ i i Λ j j | det ( Λ i i ) | 1 ε i j , μ i j = Λ i i Λ j j | det ( Λ i i ) | 1 μ i j
r = k 1 r + k 2 R ( θ ) , θ = θ , z = z
r = a r / c , θ = θ , z = z .
r = b 2 / r , θ = θ , z = z
r = b m + 1 ( 1 + a / r ) m / ( a + b ) m θ = θ , z = z

Metrics