Abstract

Temperature of the pumped volume of an ytterbium doped material has been measured while laser action is taking place. This is achieved by recording green emissions at 530 and 550 nm from Er3+ impurities. These emissions result from energy transfer upconversion processes between Yb3+ and Er3+. Experiments performed on a Yb3+:CaGdAlO4 crystal show the effect of pump power and laser wavelength on the sample internal temperature. Temperature variation along the sample length has also been measured. This method can complement data obtained by thermal cameras which can only access surface temperatures in most laser materials.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials? ” J. Alloy. Comp. 451, 1–11 (2008).
    [CrossRef]
  2. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
    [CrossRef] [PubMed]
  3. S. Bowman, S. O’Connor, S. Biswal, N. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
    [CrossRef]
  4. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials lasers,” Prog. Quantum Electron. 30, 89–153 (2006).
    [CrossRef]
  5. S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG,” Appl. Phys. B 79, 221–224 (2004).
    [CrossRef]
  6. J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
    [CrossRef] [PubMed]
  7. J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005).
    [CrossRef] [PubMed]
  8. M. Eichhorn, “Thermal lens effects in an Er3+:YAG laser with crystalline fiber geometry,” Appl. Phys. B 94, 451–457 (2009).
    [CrossRef]
  9. C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217–220 (2007).
    [CrossRef]
  10. J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
    [CrossRef] [PubMed]
  11. J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
    [CrossRef] [PubMed]
  12. L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87, 184105 (2005).
  13. H. Berthou, and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990).
    [CrossRef] [PubMed]
  14. M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84, 4753–4755 (2004).
    [CrossRef]
  15. B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90, 181117 (2007).
  16. F. Auzel, “Compteur quantique par transfert d’énergie entre deux ions de terres rares dans un tungstate mixte et dans un verre,” C.R. Acad. Sci. Paris 262, 1016–1019 (1966).
  17. J. C. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in “Radiationless Processes in Molecules and Condensed Phases,”, vol. 15 of Topics in Applied Physics, F. K. Fong, ed. (Springer, Berlin, 1976), chap. 4, pp. 239–295.
    [CrossRef]
  18. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
    [CrossRef]
  19. P. Goldner, B. Schaudel, and M. Prassas, “Dependence of cooperative luminescence intensity on Yb3+ spatial distribution in crystals and glasses,” Phys. Rev. B 65, 054103 (2002).
    [CrossRef]
  20. E. Nakazawa, and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710–1712 (1970).
    [CrossRef]
  21. F. Auzel, “Compteur quantique par transfert d’énergie de Yb3+ à Tm3+ dans un tungstate mixte et dans un verre germanate,” C.R. Acad. Sci. Paris 263, 819–821 (1966).
  22. Ph. Goldner, M. Fesquet, and F. Auzel, “Spatial domains in avalanche-pumped erbium-doped fluoride fiber,” J. Opt. Soc. Am. B 15, 2668–2673 (1998).
    [CrossRef]
  23. C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
    [CrossRef]
  24. J. A. Hutchinson, H. R. Verdun, B. H. T. Chai, B. Zandi, and L. D. Merkie, “Spectroscopic evaluation of CaYA1O4 doped with trivalent Er, Tm, Yb and Ho for eyesafe laser applications,” Opt. Mater. 3, 287–306 (1994).
    [CrossRef]
  25. J. C. Souriau, C. Borel, Ch. Wyon, C. Li, and R. Moncorgé, “Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in CaYA1O4,” J. Lumin. 59, 349–359 (1994).
    [CrossRef]
  26. . J. Boudeile, J. Didierjean, F. Balembois, F. Druon, P. Georges, J. Petit, P. Goldner and B. Viana, “High power diode pumped Yb3+:CaGdAlO4 laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper WE28.
  27. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin and P. Georges,“Thermal Lensing in Diode-Pumped Ytterbium Lasers–Part II: Evaluation of Quantum Efficiencies and Thermo-Optic Coefficients,” IEEE J. Quantum Electron. 40, 1235–1243 (2004).
    [CrossRef]
  28. J. Petit, PhD thesis, Universit’e Pierre et Marie Curie, Paris (2006).
  29. S. Yiou, F. Balembois, and P. Georges, “Numerical modeling of a continuous-wave Yb-doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22, 572–581 (2005).
    [CrossRef]

2010 (1)

S. Bowman, S. O’Connor, S. Biswal, N. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[CrossRef]

2009 (2)

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
[CrossRef] [PubMed]

M. Eichhorn, “Thermal lens effects in an Er3+:YAG laser with crystalline fiber geometry,” Appl. Phys. B 94, 451–457 (2009).
[CrossRef]

2008 (3)

G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials? ” J. Alloy. Comp. 451, 1–11 (2008).
[CrossRef]

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef] [PubMed]

2007 (2)

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90, 181117 (2007).

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217–220 (2007).
[CrossRef]

2006 (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials lasers,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

2005 (3)

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005).
[CrossRef] [PubMed]

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87, 184105 (2005).

S. Yiou, F. Balembois, and P. Georges, “Numerical modeling of a continuous-wave Yb-doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22, 572–581 (2005).
[CrossRef]

2004 (4)

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin and P. Georges,“Thermal Lensing in Diode-Pumped Ytterbium Lasers–Part II: Evaluation of Quantum Efficiencies and Thermo-Optic Coefficients,” IEEE J. Quantum Electron. 40, 1235–1243 (2004).
[CrossRef]

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84, 4753–4755 (2004).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef] [PubMed]

2002 (1)

P. Goldner, B. Schaudel, and M. Prassas, “Dependence of cooperative luminescence intensity on Yb3+ spatial distribution in crystals and glasses,” Phys. Rev. B 65, 054103 (2002).
[CrossRef]

1998 (2)

Ph. Goldner, M. Fesquet, and F. Auzel, “Spatial domains in avalanche-pumped erbium-doped fluoride fiber,” J. Opt. Soc. Am. B 15, 2668–2673 (1998).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

1994 (2)

J. A. Hutchinson, H. R. Verdun, B. H. T. Chai, B. Zandi, and L. D. Merkie, “Spectroscopic evaluation of CaYA1O4 doped with trivalent Er, Tm, Yb and Ho for eyesafe laser applications,” Opt. Mater. 3, 287–306 (1994).
[CrossRef]

J. C. Souriau, C. Borel, Ch. Wyon, C. Li, and R. Moncorgé, “Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in CaYA1O4,” J. Lumin. 59, 349–359 (1994).
[CrossRef]

1990 (1)

H. Berthou, and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990).
[CrossRef] [PubMed]

1982 (1)

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

1970 (1)

E. Nakazawa, and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710–1712 (1970).
[CrossRef]

1966 (2)

F. Auzel, “Compteur quantique par transfert d’énergie de Yb3+ à Tm3+ dans un tungstate mixte et dans un verre germanate,” C.R. Acad. Sci. Paris 263, 819–821 (1966).

F. Auzel, “Compteur quantique par transfert d’énergie entre deux ions de terres rares dans un tungstate mixte et dans un verre,” C.R. Acad. Sci. Paris 262, 1016–1019 (1966).

Aigouy, L.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87, 184105 (2005).

Alencar, M. A. R. C.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84, 4753–4755 (2004).
[CrossRef]

Anderson, J. E.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

Auzel, F.

Ph. Goldner, M. Fesquet, and F. Auzel, “Spatial domains in avalanche-pumped erbium-doped fluoride fiber,” J. Opt. Soc. Am. B 15, 2668–2673 (1998).
[CrossRef]

F. Auzel, “Compteur quantique par transfert d’énergie de Yb3+ à Tm3+ dans un tungstate mixte et dans un verre germanate,” C.R. Acad. Sci. Paris 263, 819–821 (1966).

F. Auzel, “Compteur quantique par transfert d’énergie entre deux ions de terres rares dans un tungstate mixte et dans un verre,” C.R. Acad. Sci. Paris 262, 1016–1019 (1966).

Balembois, F.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef] [PubMed]

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials lasers,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

S. Yiou, F. Balembois, and P. Georges, “Numerical modeling of a continuous-wave Yb-doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22, 572–581 (2005).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin and P. Georges,“Thermal Lensing in Diode-Pumped Ytterbium Lasers–Part II: Evaluation of Quantum Efficiencies and Thermo-Optic Coefficients,” IEEE J. Quantum Electron. 40, 1235–1243 (2004).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

Benayad, A.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

Berthou, H.

H. Berthou, and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990).
[CrossRef] [PubMed]

Biswal, S.

S. Bowman, S. O’Connor, S. Biswal, N. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[CrossRef]

Borel, C.

J. C. Souriau, C. Borel, Ch. Wyon, C. Li, and R. Moncorgé, “Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in CaYA1O4,” J. Lumin. 59, 349–359 (1994).
[CrossRef]

Boudeile, J.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

Boulon, G.

G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials? ” J. Alloy. Comp. 451, 1–11 (2008).
[CrossRef]

Bowman, S.

S. Bowman, S. O’Connor, S. Biswal, N. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[CrossRef]

Buchwald, M. I.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

Camy, P.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

Chai, B. H. T.

J. A. Hutchinson, H. R. Verdun, B. H. T. Chai, B. Zandi, and L. D. Merkie, “Spectroscopic evaluation of CaYA1O4 doped with trivalent Er, Tm, Yb and Ho for eyesafe laser applications,” Opt. Mater. 3, 287–306 (1994).
[CrossRef]

Charlot, B.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87, 184105 (2005).

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials lasers,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin and P. Georges,“Thermal Lensing in Diode-Pumped Ytterbium Lasers–Part II: Evaluation of Quantum Efficiencies and Thermo-Optic Coefficients,” IEEE J. Quantum Electron. 40, 1235–1243 (2004).
[CrossRef]

Condon, N.

S. Bowman, S. O’Connor, S. Biswal, N. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[CrossRef]

de Araújo, C. B.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84, 4753–4755 (2004).
[CrossRef]

Didierjean, J.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef] [PubMed]

Dong, B.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90, 181117 (2007).

Doualan, J. L.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

Druon, F.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials lasers,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin and P. Georges,“Thermal Lensing in Diode-Pumped Ytterbium Lasers–Part II: Evaluation of Quantum Efficiencies and Thermo-Optic Coefficients,” IEEE J. Quantum Electron. 40, 1235–1243 (2004).
[CrossRef]

Edwards, B. C.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

Eichhorn, M.

M. Eichhorn, “Thermal lens effects in an Er3+:YAG laser with crystalline fiber geometry,” Appl. Phys. B 94, 451–457 (2009).
[CrossRef]

Epstein, R. I.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

Ferrand, B.

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef] [PubMed]

Fesquet, M.

Ph. Goldner, M. Fesquet, and F. Auzel, “Spatial domains in avalanche-pumped erbium-doped fluoride fiber,” J. Opt. Soc. Am. B 15, 2668–2673 (1998).
[CrossRef]

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials lasers,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

Georges, P.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials lasers,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

S. Yiou, F. Balembois, and P. Georges, “Numerical modeling of a continuous-wave Yb-doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22, 572–581 (2005).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin and P. Georges,“Thermal Lensing in Diode-Pumped Ytterbium Lasers–Part II: Evaluation of Quantum Efficiencies and Thermo-Optic Coefficients,” IEEE J. Quantum Electron. 40, 1235–1243 (2004).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

Goldner, P.

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005).
[CrossRef] [PubMed]

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef] [PubMed]

P. Goldner, B. Schaudel, and M. Prassas, “Dependence of cooperative luminescence intensity on Yb3+ spatial distribution in crystals and glasses,” Phys. Rev. B 65, 054103 (2002).
[CrossRef]

Goldner, Ph.

Ph. Goldner, M. Fesquet, and F. Auzel, “Spatial domains in avalanche-pumped erbium-doped fluoride fiber,” J. Opt. Soc. Am. B 15, 2668–2673 (1998).
[CrossRef]

Herault, E.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef] [PubMed]

Hoffmann, H. D.

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
[CrossRef] [PubMed]

Huber, G.

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217–220 (2007).
[CrossRef]

Hutchinson, J. A.

J. A. Hutchinson, H. R. Verdun, B. H. T. Chai, B. Zandi, and L. D. Merkie, “Spectroscopic evaluation of CaYA1O4 doped with trivalent Er, Tm, Yb and Ho for eyesafe laser applications,” Opt. Mater. 3, 287–306 (1994).
[CrossRef]

Johannsen, J.

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217–220 (2007).
[CrossRef]

Jörgensen, C. K.

H. Berthou, and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990).
[CrossRef] [PubMed]

Kränkel, C.

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217–220 (2007).
[CrossRef]

Lawson, C. M.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Lei, G.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

Li, C.

J. C. Souriau, C. Borel, Ch. Wyon, C. Li, and R. Moncorgé, “Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in CaYA1O4,” J. Lumin. 59, 349–359 (1994).
[CrossRef]

Li, C. R.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90, 181117 (2007).

Liu, D. P.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90, 181117 (2007).

Louiseau, P.

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef] [PubMed]

Lucas-Leclin, G.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin and P. Georges,“Thermal Lensing in Diode-Pumped Ytterbium Lasers–Part II: Evaluation of Quantum Efficiencies and Thermo-Optic Coefficients,” IEEE J. Quantum Electron. 40, 1235–1243 (2004).
[CrossRef]

Maciel, G. S.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84, 4753–4755 (2004).
[CrossRef]

Mans, T.

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
[CrossRef] [PubMed]

Ménard, V.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

Merkie, L. D.

J. A. Hutchinson, H. R. Verdun, B. H. T. Chai, B. Zandi, and L. D. Merkie, “Spectroscopic evaluation of CaYA1O4 doped with trivalent Er, Tm, Yb and Ho for eyesafe laser applications,” Opt. Mater. 3, 287–306 (1994).
[CrossRef]

Miao, S. M.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90, 181117 (2007).

Moncorgé, R.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

J. C. Souriau, C. Borel, Ch. Wyon, C. Li, and R. Moncorgé, “Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in CaYA1O4,” J. Lumin. 59, 349–359 (1994).
[CrossRef]

Mortier, M.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87, 184105 (2005).

Nakazawa, E.

E. Nakazawa, and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710–1712 (1970).
[CrossRef]

O’Connor, S.

S. Bowman, S. O’Connor, S. Biswal, N. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[CrossRef]

Patra, A.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84, 4753–4755 (2004).
[CrossRef]

Petermann, K.

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217–220 (2007).
[CrossRef]

Peters, R.

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217–220 (2007).
[CrossRef]

Petit, J.

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005).
[CrossRef] [PubMed]

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef] [PubMed]

Poprawe, R.

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
[CrossRef] [PubMed]

Powell, R. C.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Prassas, M.

P. Goldner, B. Schaudel, and M. Prassas, “Dependence of cooperative luminescence intensity on Yb3+ spatial distribution in crystals and glasses,” Phys. Rev. B 65, 054103 (2002).
[CrossRef]

Rosenberg, A.

S. Bowman, S. O’Connor, S. Biswal, N. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[CrossRef]

Rotarius, G.

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
[CrossRef] [PubMed]

Russbueldt, P.

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
[CrossRef] [PubMed]

Schaudel, B.

P. Goldner, B. Schaudel, and M. Prassas, “Dependence of cooperative luminescence intensity on Yb3+ spatial distribution in crystals and glasses,” Phys. Rev. B 65, 054103 (2002).
[CrossRef]

Shionoya, S.

E. Nakazawa, and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710–1712 (1970).
[CrossRef]

Souriau, J. C.

J. C. Souriau, C. Borel, Ch. Wyon, C. Li, and R. Moncorgé, “Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in CaYA1O4,” J. Lumin. 59, 349–359 (1994).
[CrossRef]

Tessier, G.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87, 184105 (2005).

Verdun, H. R.

J. A. Hutchinson, H. R. Verdun, B. H. T. Chai, B. Zandi, and L. D. Merkie, “Spectroscopic evaluation of CaYA1O4 doped with trivalent Er, Tm, Yb and Ho for eyesafe laser applications,” Opt. Mater. 3, 287–306 (1994).
[CrossRef]

Viana, B.

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005).
[CrossRef] [PubMed]

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef] [PubMed]

Vivien, D.

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef] [PubMed]

Wang, X. J.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90, 181117 (2007).

Weitenberg, J.

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
[CrossRef] [PubMed]

Wyon, Ch.

J. C. Souriau, C. Borel, Ch. Wyon, C. Li, and R. Moncorgé, “Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in CaYA1O4,” J. Lumin. 59, 349–359 (1994).
[CrossRef]

Yang, T.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90, 181117 (2007).

Yiou, S.

S. Yiou, F. Balembois, and P. Georges, “Numerical modeling of a continuous-wave Yb-doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22, 572–581 (2005).
[CrossRef]

Zandi, B.

J. A. Hutchinson, H. R. Verdun, B. H. T. Chai, B. Zandi, and L. D. Merkie, “Spectroscopic evaluation of CaYA1O4 doped with trivalent Er, Tm, Yb and Ho for eyesafe laser applications,” Opt. Mater. 3, 287–306 (1994).
[CrossRef]

Zwicker, W. K.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Appl. Phys. B (3)

M. Eichhorn, “Thermal lens effects in an Er3+:YAG laser with crystalline fiber geometry,” Appl. Phys. B 94, 451–457 (2009).
[CrossRef]

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217–220 (2007).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87, 184105 (2005).

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84, 4753–4755 (2004).
[CrossRef]

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90, 181117 (2007).

C.R. Acad. Sci. Paris (2)

F. Auzel, “Compteur quantique par transfert d’énergie entre deux ions de terres rares dans un tungstate mixte et dans un verre,” C.R. Acad. Sci. Paris 262, 1016–1019 (1966).

F. Auzel, “Compteur quantique par transfert d’énergie de Yb3+ à Tm3+ dans un tungstate mixte et dans un verre germanate,” C.R. Acad. Sci. Paris 263, 819–821 (1966).

IEEE J. Quantum Electron. (2)

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin and P. Georges,“Thermal Lensing in Diode-Pumped Ytterbium Lasers–Part II: Evaluation of Quantum Efficiencies and Thermo-Optic Coefficients,” IEEE J. Quantum Electron. 40, 1235–1243 (2004).
[CrossRef]

S. Bowman, S. O’Connor, S. Biswal, N. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46, 1076–1085 (2010).
[CrossRef]

J. Alloy. Comp. (1)

G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials? ” J. Alloy. Comp. 451, 1–11 (2008).
[CrossRef]

J. Lumin. (1)

J. C. Souriau, C. Borel, Ch. Wyon, C. Li, and R. Moncorgé, “Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in CaYA1O4,” J. Lumin. 59, 349–359 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Ph. Goldner, M. Fesquet, and F. Auzel, “Spatial domains in avalanche-pumped erbium-doped fluoride fiber,” J. Opt. Soc. Am. B 15, 2668–2673 (1998).
[CrossRef]

S. Yiou, F. Balembois, and P. Georges, “Numerical modeling of a continuous-wave Yb-doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22, 572–581 (2005).
[CrossRef]

Opt. Express (3)

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
[CrossRef] [PubMed]

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[CrossRef] [PubMed]

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008).
[CrossRef] [PubMed]

Opt. Lett. (3)

H. Berthou, and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990).
[CrossRef] [PubMed]

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004).
[CrossRef] [PubMed]

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005).
[CrossRef] [PubMed]

Opt. Mater. (1)

J. A. Hutchinson, H. R. Verdun, B. H. T. Chai, B. Zandi, and L. D. Merkie, “Spectroscopic evaluation of CaYA1O4 doped with trivalent Er, Tm, Yb and Ho for eyesafe laser applications,” Opt. Mater. 3, 287–306 (1994).
[CrossRef]

Phys. Rev. B (3)

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
[CrossRef]

P. Goldner, B. Schaudel, and M. Prassas, “Dependence of cooperative luminescence intensity on Yb3+ spatial distribution in crystals and glasses,” Phys. Rev. B 65, 054103 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

E. Nakazawa, and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710–1712 (1970).
[CrossRef]

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials lasers,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Other (3)

J. C. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in “Radiationless Processes in Molecules and Condensed Phases,”, vol. 15 of Topics in Applied Physics, F. K. Fong, ed. (Springer, Berlin, 1976), chap. 4, pp. 239–295.
[CrossRef]

. J. Boudeile, J. Didierjean, F. Balembois, F. Druon, P. Georges, J. Petit, P. Goldner and B. Viana, “High power diode pumped Yb3+:CaGdAlO4 laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper WE28.

J. Petit, PhD thesis, Universit’e Pierre et Marie Curie, Paris (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for erbium green emission measurements during laser action.

Fig. 2
Fig. 2

Emission spectra in the blue-green spectral range of Yb3+ :CALGO under 980 nm excitation at three different temperatures. The spectra are normalized to the line denoted by a star.

Fig. 4
Fig. 4

Yb3+:CALGO visible fluorescence spectrum at 100 °C. Dashed line: Gaussian line-shape fit to Yb3+ cooperative luminescence. Er3+ intensities are evaluated at 530 and 550 nm (denoted by A and B respectively). Inset: Yb3+ infrared emission convolution (solid line) and fit by a Gaussian lineshape (dotted line).

Fig. 3
Fig. 3

Energy level diagrams of Er3+ and Yb3+ ions, energy transfers occurring in the up-conversion process (curved lines), non radiative relaxations (dotted lines) and green emissions (thick lines).

Fig. 5
Fig. 5

2H11/2 and 4S3/2 emission intensity ratios as a function of temperature (squares) and exponential fit (solid line).

Fig. 6
Fig. 6

Internal temperature of a 2 at%Yb3+:CALGO under 980 nm excitation as a function of pump power with (triangles) or without (squares) laser action. The sample is thermally isolated.

Fig. 7
Fig. 7

Internal temperature variation in a 2 at%Yb3+:CALGO under 980 nm excitation (2 W pump power) as a function of the distance from the input face. The sample is thermally isolated. The solid line is a guide for the eyes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N h N l = g h g l exp ( Δ E k T )

Metrics