G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).

[CrossRef]

C. Bourlier and N. Pinel, “Numerical implementation of local unified models for backscattering from random rough sea surfaces,” Waves in Random and Complex Media 19(3), 455–479 (2009).

[CrossRef]

B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 47, 3399–3405 (2009).

X. Wang and L. W. Li, “Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization,” Prog. Electromagn. Res. 91, 35–51 (2009).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).

[CrossRef]

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).

[CrossRef]

L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).

[CrossRef]

D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).

[CrossRef]

T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).

[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).

[CrossRef]

J. T. Johnson and R. J. Burkholder, “A study of scattering from an object below a rough surface,” IEEE Trans. Geosci. Rem. Sens. 42(1), 59–66 (2004).

[CrossRef]

T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004).

[CrossRef]

X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).

[CrossRef]

N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).

[CrossRef]

J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000).

[CrossRef]

Y. Kuga and P. Phu, “Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces,” Prog. Electromagn. Res. 14, 37–88 (1996).

A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).

[CrossRef]

R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).

[CrossRef]

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).

[CrossRef]

E. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83(1), 78–92 (1988).

[CrossRef]

I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).

[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).

[CrossRef]

R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).

[CrossRef]

G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).

[CrossRef]

C. Bourlier and N. Pinel, “Numerical implementation of local unified models for backscattering from random rough sea surfaces,” Waves in Random and Complex Media 19(3), 455–479 (2009).

[CrossRef]

D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).

[CrossRef]

J. T. Johnson and R. J. Burkholder, “A study of scattering from an object below a rough surface,” IEEE Trans. Geosci. Rem. Sens. 42(1), 59–66 (2004).

[CrossRef]

T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).

[CrossRef]

N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).

[CrossRef]

B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 47, 3399–3405 (2009).

D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).

[CrossRef]

T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).

[CrossRef]

X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).

[CrossRef]

N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).

[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).

[CrossRef]

T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).

[CrossRef]

L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).

[CrossRef]

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).

[CrossRef]

B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 47, 3399–3405 (2009).

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).

[CrossRef]

J. T. Johnson and R. J. Burkholder, “A study of scattering from an object below a rough surface,” IEEE Trans. Geosci. Rem. Sens. 42(1), 59–66 (2004).

[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).

[CrossRef]

J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000).

[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).

[CrossRef]

I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).

[CrossRef]

G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).

[CrossRef]

Y. Kuga and P. Phu, “Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces,” Prog. Electromagn. Res. 14, 37–88 (1996).

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).

[CrossRef]

I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).

[CrossRef]

L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).

[CrossRef]

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).

[CrossRef]

X. Wang and L. W. Li, “Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization,” Prog. Electromagn. Res. 91, 35–51 (2009).

[CrossRef]

X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).

[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).

[CrossRef]

T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).

[CrossRef]

R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).

[CrossRef]

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).

[CrossRef]

D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).

[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

Y. Kuga and P. Phu, “Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces,” Prog. Electromagn. Res. 14, 37–88 (1996).

C. Bourlier and N. Pinel, “Numerical implementation of local unified models for backscattering from random rough sea surfaces,” Waves in Random and Complex Media 19(3), 455–479 (2009).

[CrossRef]

R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).

[CrossRef]

G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).

[CrossRef]

A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).

[CrossRef]

N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).

[CrossRef]

E. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83(1), 78–92 (1988).

[CrossRef]

A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).

[CrossRef]

J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000).

[CrossRef]

X. Wang and L. W. Li, “Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization,” Prog. Electromagn. Res. 91, 35–51 (2009).

[CrossRef]

X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).

[CrossRef]

L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).

[CrossRef]

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).

[CrossRef]

T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).

[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).

[CrossRef]

X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).

[CrossRef]

I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).

[CrossRef]

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).

[CrossRef]

R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).

[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).

[CrossRef]

N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).

[CrossRef]

B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 47, 3399–3405 (2009).

T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).

[CrossRef]

J. T. Johnson and R. J. Burkholder, “A study of scattering from an object below a rough surface,” IEEE Trans. Geosci. Rem. Sens. 42(1), 59–66 (2004).

[CrossRef]

A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000).

[CrossRef]

E. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83(1), 78–92 (1988).

[CrossRef]

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).

[CrossRef]

L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).

[CrossRef]

D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).

[CrossRef]

X. Wang and L. W. Li, “Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization,” Prog. Electromagn. Res. 91, 35–51 (2009).

[CrossRef]

Y. Kuga and P. Phu, “Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces,” Prog. Electromagn. Res. 14, 37–88 (1996).

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).

[CrossRef]

C. Bourlier and N. Pinel, “Numerical implementation of local unified models for backscattering from random rough sea surfaces,” Waves in Random and Complex Media 19(3), 455–479 (2009).

[CrossRef]

G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).

[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).

[CrossRef]

T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004).

[CrossRef]

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method (Boston: Artech House, 2005).

J. A. Kong, Electromagnetic Wave Theory (New York: Wiley, 1986).