Abstract

Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83(1), 78–92 (1988).
    [CrossRef]
  2. C. Bourlier and N. Pinel, “Numerical implementation of local unified models for backscattering from random rough sea surfaces,” Waves in Random and Complex Media 19(3), 455–479 (2009).
    [CrossRef]
  3. T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004).
    [CrossRef]
  4. N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).
    [CrossRef]
  5. B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 47, 3399–3405 (2009).
  6. X. Wang and L. W. Li, “Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization,” Prog. Electromagn. Res. 91, 35–51 (2009).
    [CrossRef]
  7. X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).
    [CrossRef]
  8. Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
    [CrossRef]
  9. D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).
    [CrossRef]
  10. G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).
    [CrossRef]
  11. T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).
    [CrossRef]
  12. J. T. Johnson and R. J. Burkholder, “A study of scattering from an object below a rough surface,” IEEE Trans. Geosci. Rem. Sens. 42(1), 59–66 (2004).
    [CrossRef]
  13. F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).
    [CrossRef]
  14. J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).
    [CrossRef]
  15. J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).
    [CrossRef]
  16. J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).
    [CrossRef]
  17. J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).
    [CrossRef]
  18. L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).
    [CrossRef]
  19. Y. Kuga and P. Phu, “Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces,” Prog. Electromagn. Res. 14, 37–88 (1996).
  20. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method (Boston: Artech House, 2005).
  21. J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000).
    [CrossRef]
  22. A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).
    [CrossRef]
  23. I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).
    [CrossRef]
  24. R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).
    [CrossRef]
  25. R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).
    [CrossRef]
  26. J. A. Kong, Electromagnetic Wave Theory (New York: Wiley, 1986).

2010 (1)

G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).
[CrossRef]

2009 (6)

C. Bourlier and N. Pinel, “Numerical implementation of local unified models for backscattering from random rough sea surfaces,” Waves in Random and Complex Media 19(3), 455–479 (2009).
[CrossRef]

B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 47, 3399–3405 (2009).

X. Wang and L. W. Li, “Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization,” Prog. Electromagn. Res. 91, 35–51 (2009).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).
[CrossRef]

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).
[CrossRef]

L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).
[CrossRef]

2008 (2)

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).
[CrossRef]

2007 (3)

D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).
[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).
[CrossRef]

I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).
[CrossRef]

2005 (2)

T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).
[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
[CrossRef]

2004 (2)

J. T. Johnson and R. J. Burkholder, “A study of scattering from an object below a rough surface,” IEEE Trans. Geosci. Rem. Sens. 42(1), 59–66 (2004).
[CrossRef]

T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004).
[CrossRef]

2003 (1)

X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).
[CrossRef]

2001 (1)

N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).
[CrossRef]

2000 (1)

J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000).
[CrossRef]

1996 (1)

Y. Kuga and P. Phu, “Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces,” Prog. Electromagn. Res. 14, 37–88 (1996).

1994 (1)

A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).
[CrossRef]

1992 (1)

R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).
[CrossRef]

1991 (1)

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).
[CrossRef]

1988 (1)

E. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83(1), 78–92 (1988).
[CrossRef]

Ahmed, I.

I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).
[CrossRef]

Ao, T. M

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
[CrossRef]

Beggs, J.

R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).
[CrossRef]

Bourlier, C.

G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).
[CrossRef]

C. Bourlier and N. Pinel, “Numerical implementation of local unified models for backscattering from random rough sea surfaces,” Waves in Random and Complex Media 19(3), 455–479 (2009).
[CrossRef]

Burkholder, R. J.

D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).
[CrossRef]

J. T. Johnson and R. J. Burkholder, “A study of scattering from an object below a rough surface,” IEEE Trans. Geosci. Rem. Sens. 42(1), 59–66 (2004).
[CrossRef]

Cai, W.

T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).
[CrossRef]

Carin, L.

N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).
[CrossRef]

Chew, W. C.

B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 47, 3399–3405 (2009).

Colak, D.

D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).
[CrossRef]

Elfouhaily, T. M.

T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004).
[CrossRef]

Frezza, F.

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).
[CrossRef]

Fung, A. K.

A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).
[CrossRef]

Gan, Y. B.

X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).
[CrossRef]

Geng, N.

N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).
[CrossRef]

Grzegorczyk,

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
[CrossRef]

Guérin, C. A.

T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004).
[CrossRef]

Guo, L. X.

L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).
[CrossRef]

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).
[CrossRef]

Han, X. B.

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).
[CrossRef]

Hu, B.

B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 47, 3399–3405 (2009).

Hunsberger, F.

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).
[CrossRef]

Johnson, J. T.

J. T. Johnson and R. J. Burkholder, “A study of scattering from an object below a rough surface,” IEEE Trans. Geosci. Rem. Sens. 42(1), 59–66 (2004).
[CrossRef]

Jr, C. D

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
[CrossRef]

Juntunen, J. S.

J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000).
[CrossRef]

Kong, J. A

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
[CrossRef]

Krohne, K.

I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).
[CrossRef]

Kubické, G.

G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).
[CrossRef]

Kuga, Y.

Y. Kuga and P. Phu, “Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces,” Prog. Electromagn. Res. 14, 37–88 (1996).

Kunz, K. S.

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).
[CrossRef]

Li, E.

I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).
[CrossRef]

Li, J.

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).
[CrossRef]

L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).
[CrossRef]

Li, L. W.

X. Wang and L. W. Li, “Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization,” Prog. Electromagn. Res. 91, 35–51 (2009).
[CrossRef]

X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).
[CrossRef]

Lu, J.

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
[CrossRef]

Lu, T.

T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).
[CrossRef]

Luebbers, R.

R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).
[CrossRef]

Luebbers, R. J.

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).
[CrossRef]

Martinelli, P.

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).
[CrossRef]

Moss, C. O

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
[CrossRef]

Newman, E. H.

D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).
[CrossRef]

Pacheco, J.

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
[CrossRef]

Pajewski, L.

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).
[CrossRef]

Phu, P.

Y. Kuga and P. Phu, “Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces,” Prog. Electromagn. Res. 14, 37–88 (1996).

Pinel, N.

C. Bourlier and N. Pinel, “Numerical implementation of local unified models for backscattering from random rough sea surfaces,” Waves in Random and Complex Media 19(3), 455–479 (2009).
[CrossRef]

Ryan, D.

R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).
[CrossRef]

Saillard, J.

G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).
[CrossRef]

Schettini, G.

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).
[CrossRef]

Schneider, M.

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).
[CrossRef]

Shah, M. R.

A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).
[CrossRef]

Sullivan, A.

N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).
[CrossRef]

Thorsos, E.

E. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83(1), 78–92 (1988).
[CrossRef]

Tjuatja, S.

A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).
[CrossRef]

Tsiboukis, T. D.

J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000).
[CrossRef]

Wang, X.

X. Wang and L. W. Li, “Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization,” Prog. Electromagn. Res. 91, 35–51 (2009).
[CrossRef]

Wang, X. D.

X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).
[CrossRef]

Zeng, H.

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).
[CrossRef]

L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).
[CrossRef]

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).
[CrossRef]

Zhang, P.

T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).
[CrossRef]

Zhang, Y.

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

X. D. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM Case,” IEEE Antennas Wirel. Propag. Lett. 2(22), 319–322 (2003).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

I. Ahmed, E. Li, and K. Krohne, “Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method,” IEEE Microw. Wirel. Compon. Lett. 17(12), 816–818 (2007).
[CrossRef]

IEEE Trans. Antenn. Propag. (4)

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain near zone to far zone transformation,” IEEE Trans. Antenn. Propag. 39(4), 429–433 (1991).
[CrossRef]

R. Luebbers, D. Ryan, and J. Beggs, “A two-dimensional time-domain near-zone to far-zone transformation,” IEEE Trans. Antenn. Propag. 40(7), 848–851 (1992).
[CrossRef]

Y. Zhang, J. Lu, J. Pacheco, C. D Jr, C. O Moss, T. M Ao, Grzegorczyk, and J. A Kong, “Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces,” IEEE Trans. Antenn. Propag. 53(5), 1631–1639 (2005).
[CrossRef]

N. Geng, A. Sullivan, and L. Carin, “Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space,” IEEE Trans. Antenn. Propag. 49(5), 740–748 (2001).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (4)

B. Hu and W. C. Chew, “Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium,” IEEE Trans. Geosci. Rem. Sens. 47, 3399–3405 (2009).

T. Lu, W. Cai, and P. Zhang, “Discontinuous galerkin time-domain method for GPR simulation in dispersive media,” IEEE Trans. Geosci. Rem. Sens. 43(1), 72–80 (2005).
[CrossRef]

J. T. Johnson and R. J. Burkholder, “A study of scattering from an object below a rough surface,” IEEE Trans. Geosci. Rem. Sens. 42(1), 59–66 (2004).
[CrossRef]

A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three- dimensional randomly rough surfaces,” IEEE Trans. Geosci. Rem. Sens. 32(5), 986–994 (1994).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. Lett. (1)

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Trans. Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000).
[CrossRef]

J. Acoust. Soc. Am. (1)

E. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83(1), 78–92 (1988).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Li, L. X. Guo, H. Zeng, and X. B. Han, “Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary,” J. Opt. Soc. Am. A 26(6), 1494–1502 (2009).
[CrossRef]

L. X. Guo, J. Li, and H. Zeng, “Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach,” J. Opt. Soc. Am. A 26(11), 2383–2392 (2009).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microw. Opt. Technol. Lett. 49(1), 241–247 (2007).
[CrossRef]

Prog. Electromagn. Res. (3)

X. Wang and L. W. Li, “Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization,” Prog. Electromagn. Res. 91, 35–51 (2009).
[CrossRef]

Y. Kuga and P. Phu, “Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces,” Prog. Electromagn. Res. 14, 37–88 (1996).

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition,” Prog. Electromagn. Res. 88, 197–211 (2008).
[CrossRef]

Waves in Random and Complex Media (1)

C. Bourlier and N. Pinel, “Numerical implementation of local unified models for backscattering from random rough sea surfaces,” Waves in Random and Complex Media 19(3), 455–479 (2009).
[CrossRef]

Waves Random Complex Media (3)

G. Kubické, C. Bourlier, and J. Saillard, “Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method,” Waves Random Complex Media 20(1), 156–178 (2010).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface,” Waves Random Complex Media 18(4), 641–650 (2008).
[CrossRef]

J. Li, L. X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition,” Waves Random Complex Media 19(3), 418–429 (2009).
[CrossRef]

Waves Random Media (1)

T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004).
[CrossRef]

Other (2)

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method (Boston: Artech House, 2005).

J. A. Kong, Electromagnetic Wave Theory (New York: Wiley, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry of the composite model

Fig. 2
Fig. 2

Comparison of NRCS by the pulsed FDTD method with the result by CW FDTD method (a) s polarization θ i = 30 (b) p polarization θ i = 50

Fig. 3
Fig. 3

NRCS versus frequency for different incident angles, p polarization (a) rough surface (b)composite model

Fig. 4
Fig. 4

NRCS versus frequency for different ε r . (a)backscattering (b)specular scattering

Fig. 5
Fig. 5

NRCS from the composite model for different δ and l, specular scattering (a) δ = 0.006 m~0.03m, l = 0.15 m (b) δ = 0.01 m, l = 0.06 m~0.15m

Fig. 6
Fig. 6

Representative time-domain scattering fields e z , 2 D ( t ) multiplied by the factor r 1 / 2 versus time p polarization (a) rough surface (b) composite model

Fig. 7
Fig. 7

Representative time-domain scattering field h z , 2 D ( t ) multiplied by the factor η r 1 / 2 versus time for different r 0 s polarization (a)specular scattering (b)backscattering

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E z n + 1 ( i , j ) = C A ( m ) E z n ( i , j ) + C B ( m ) [ H y n + 1 / 2 ( i + 1 / 2 , j ) H y n + 1 / 2 ( i 1 / 2 , j ) Δ x H x n + 1 / 2 ( i , j + 1 / 2 ) H x n + 1 / 2 ( i , j 1 / 2 ) Δ y ]
H x n + 1 / 2 ( i , j + 1 2 ) = C P ( m ) H x n 1 / 2 ( i , j + 1 2 ) C Q ( m ) E z n ( i , j + 1 ) E z n ( i , j ) Δ y
H y n + 1 / 2 ( i + 1 2 , j ) = C P ( m ) H y n 1 / 2 ( i + 1 2 , j ) + C Q ( m ) E z n ( i + 1 , j ) E z n ( i , j ) Δ x
G ( x , y ) = exp { [ ( x x 0 ) 2 + ( y y 0 ) 2 ] ( cos θ i T ) 2 }
E z n + 1 ( i , j ) = C A ( m ) E z n ( i , j ) + C B ( m ) [ H y n + 1 / 2 ( i + 1 / 2 , j ) H y n + 1 / 2 ( i 1 / 2 , j ) κ x Δ x H x n + 1 / 2 ( i , j + 1 / 2 ) H x n + 1 / 2 ( i , j 1 / 2 ) κ y Δ y + ψ E z , x n + 1 / 2 ( i , j ) ψ E z , y n + 1 / 2 ( i , j ) ]
ψ E z , x n + 1 / 2 ( i , j ) = b x ψ E z , x n 1 / 2 ( i , j ) + c x H y n + 1 / 2 ( i + 1 / 2 , j ) H y n + 1 / 2 ( i 1 / 2 , j ) Δ x
ψ E z , y n + 1 / 2 ( i , j ) = b y ψ E z , y n 1 / 2 ( i , j ) + c y H x n + 1 / 2 ( i , j + 1 / 2 ) H x n + 1 / 2 ( i , j 1 / 2 ) Δ y
b w = exp [ ( σ w ε 0 κ w + a w ε 0 ) Δ t ] , c w = σ w σ w κ w + κ w 2 a w ( b w 1 ) ( w = x , y )
{ σ x ( x ) = ( x / d ) M σ x , max κ x ( x ) = 1 + ( κ x , max 1 ) ( x / d ) M a x ( x ) = a x , max ( d x d ) M a ( 0 x d )
r E 2 D s = 2 π c j ω r E 3 D s
{ w 3 D ( t ) = 1 4 π r c t S j ( r , t + e r r c r c ) d s u 3 D ( t ) = 1 4 π r c t S j m ( r , t + e r r c r c ) d s
e θ , 3 D ( t ) = η w θ , 3 D u ϕ , 3 D
e ϕ , 3 D ( t ) = η w ϕ , 3 D + u θ , 3 D
h θ , 3 D ( t ) = w ϕ , 3 D u θ , 3 D / η
h ϕ , 3 D ( t ) = w θ , 3 D u ϕ , 3 D / η
r e θ , 3 D ( t ) = r e z , 2 D ( t ) ( p polarization )
r h θ , 3 D ( t ) = r h z , 2 D ( t ) ( s polarization )
σ = lim r ( 2 π r L | E 2 D s | 2 | E i | 2 )
e i ( t ) = exp [ 4 π ( t t 0 ) 2 / τ 2 ]

Metrics